titletor-phi_1-5 / README.md
zelalt's picture
Update README.md
c0d25a5
|
raw
history blame
3.28 kB
metadata
license: other
base_model: microsoft/phi-1_5
tags:
  - generated_from_trainer
model-index:
  - name: titletor-phi_1-5
    results: []

titletor-phi_1-5

This model is a fine-tuned version of microsoft/phi-1_5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1587

Model description

Sample Code

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("zelalt/titletor-phi_1-5", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("zelalt/titletor-phi_1-5", trust_remote_code=True)
inputs = tokenizer(f'''What is the title of this paper? ....[your pdf as text]\n\nAnswer: ''', return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs,max_new_tokens=50, pad_token_id = tokenizer.eos_token_id, eos_token_id = tokenizer.eos_token_id)
text = tokenizer.batch_decode(outputs)[0]
print(text)

Training and evaluation data

Train and validation dataset: zelalt/scientific-papers-3.5-withprompt

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
3.4023 0.1 40 2.9074
2.7878 0.2 80 2.7608
2.7083 0.3 120 2.6496
2.6213 0.41 160 2.5309
2.5145 0.51 200 2.4658
2.4395 0.61 240 2.4294
2.4016 0.71 280 2.3857
2.4194 0.81 320 2.3635
2.3467 0.91 360 2.3278
2.2736 1.02 400 2.2854
2.1737 1.12 440 2.2824
2.1805 1.22 480 2.2722
2.1472 1.32 520 2.2521
2.1654 1.42 560 2.2372
2.1281 1.52 600 2.2304
2.0958 1.62 640 2.2136
2.1422 1.73 680 2.1955
2.07 1.83 720 2.1919
2.0684 1.93 760 2.1829
2.0392 2.03 800 2.1726
1.868 2.13 840 2.1760
1.8342 2.23 880 2.1696
1.8225 2.34 920 2.1684
1.8678 2.44 960 2.1671
1.8543 2.54 1000 2.1618
1.8666 2.64 1040 2.1607
1.8597 2.74 1080 2.1600
1.8605 2.84 1120 2.1591
1.8515 2.94 1160 2.1587

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0