whisper-large-v3-es / README.md
zuazo's picture
End of training
bec996a verified
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large-V3 Spanish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 es
          type: mozilla-foundation/common_voice_13_0
          config: es
          split: test
          args: es
        metrics:
          - name: Wer
            type: wer
            value: 4.9295277686894154

Whisper Large-V3 Spanish

This model is a fine-tuned version of openai/whisper-large-v3 on the mozilla-foundation/common_voice_13_0 es dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3245
  • Wer: 4.9295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.058 2.04 1000 0.1540 4.6851
0.0124 4.07 2000 0.1829 4.6787
0.0052 6.11 3000 0.2190 4.8096
0.0024 8.15 4000 0.2289 4.8776
0.0024 10.18 5000 0.2341 4.8923
0.0015 12.22 6000 0.2459 4.9340
0.0021 14.26 7000 0.2558 4.9276
0.0011 16.29 8000 0.2540 5.1015
0.0013 18.33 9000 0.2611 5.1855
0.0005 20.37 10000 0.2720 4.9379
0.0028 22.4 11000 0.2614 5.0110
0.0004 24.44 12000 0.2652 4.9898
0.0004 26.48 13000 0.2850 4.9776
0.0006 28.51 14000 0.2736 4.9732
0.0002 30.55 15000 0.2944 5.1566
0.0002 32.59 16000 0.2949 5.0007
0.0001 34.62 17000 0.3094 4.9552
0.0 36.66 18000 0.3185 4.9622
0.0 38.7 19000 0.3229 4.9462
0.0 40.73 20000 0.3245 4.9295

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1