metadata
language:
- es
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Large-V3 Spanish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 es
type: mozilla-foundation/common_voice_13_0
config: es
split: test
args: es
metrics:
- name: Wer
type: wer
value: 4.9295277686894154
Whisper Large-V3 Spanish
This model is a fine-tuned version of openai/whisper-large-v3 on the mozilla-foundation/common_voice_13_0 es dataset. It achieves the following results on the evaluation set:
- Loss: 0.3245
- Wer: 4.9295
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.058 | 2.04 | 1000 | 0.1540 | 4.6851 |
0.0124 | 4.07 | 2000 | 0.1829 | 4.6787 |
0.0052 | 6.11 | 3000 | 0.2190 | 4.8096 |
0.0024 | 8.15 | 4000 | 0.2289 | 4.8776 |
0.0024 | 10.18 | 5000 | 0.2341 | 4.8923 |
0.0015 | 12.22 | 6000 | 0.2459 | 4.9340 |
0.0021 | 14.26 | 7000 | 0.2558 | 4.9276 |
0.0011 | 16.29 | 8000 | 0.2540 | 5.1015 |
0.0013 | 18.33 | 9000 | 0.2611 | 5.1855 |
0.0005 | 20.37 | 10000 | 0.2720 | 4.9379 |
0.0028 | 22.4 | 11000 | 0.2614 | 5.0110 |
0.0004 | 24.44 | 12000 | 0.2652 | 4.9898 |
0.0004 | 26.48 | 13000 | 0.2850 | 4.9776 |
0.0006 | 28.51 | 14000 | 0.2736 | 4.9732 |
0.0002 | 30.55 | 15000 | 0.2944 | 5.1566 |
0.0002 | 32.59 | 16000 | 0.2949 | 5.0007 |
0.0001 | 34.62 | 17000 | 0.3094 | 4.9552 |
0.0 | 36.66 | 18000 | 0.3185 | 4.9622 |
0.0 | 38.7 | 19000 | 0.3229 | 4.9462 |
0.0 | 40.73 | 20000 | 0.3245 | 4.9295 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1