autoevaluator
HF staff
Add evaluation results on the ARTeLab--ilpost config and test split of ARTeLab/ilpost
e541902
metadata
tags:
- summarization
language:
- it
metrics:
- rouge
model-index:
- name: summarization_ilpost
results:
- task:
type: summarization
name: Summarization
dataset:
name: ARTeLab/ilpost
type: ARTeLab/ilpost
config: ARTeLab--ilpost
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 28.4008
verified: true
- name: ROUGE-2
type: rouge
value: 13.9951
verified: true
- name: ROUGE-L
type: rouge
value: 24.1571
verified: true
- name: ROUGE-LSUM
type: rouge
value: 26.0996
verified: true
- name: loss
type: loss
value: 1.6566967964172363
verified: true
- name: gen_len
type: gen_len
value: 18.9439
verified: true
datasets:
- ARTeLab/ilpost
summarization_ilpost
This model is a fine-tuned version of gsarti/it5-base on IlPost dataset for Abstractive Summarization.
It achieves the following results:
- Loss: 1.6020
- Rouge1: 33.7802
- Rouge2: 16.2953
- Rougel: 27.4797
- Rougelsum: 30.2273
- Gen Len: 45.3175
Usage
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost")
model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost")
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3