SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v1")
sentences = [
'Recipes that can be made using red onion and paprika: Breakfast Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac & Cheese, Tomato Chicken Curry',
'What are some ways to use red onion and paprika in recipes?',
'Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9704 |
cosine_accuracy@3 |
0.9926 |
cosine_accuracy@5 |
0.9988 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9704 |
cosine_precision@3 |
0.3309 |
cosine_precision@5 |
0.1998 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9704 |
cosine_recall@3 |
0.9926 |
cosine_recall@5 |
0.9988 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9865 |
cosine_mrr@10 |
0.9822 |
cosine_map@100 |
0.9822 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9729 |
cosine_accuracy@3 |
0.9932 |
cosine_accuracy@5 |
0.9988 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9729 |
cosine_precision@3 |
0.3311 |
cosine_precision@5 |
0.1998 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9729 |
cosine_recall@3 |
0.9932 |
cosine_recall@5 |
0.9988 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9876 |
cosine_mrr@10 |
0.9836 |
cosine_map@100 |
0.9836 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9723 |
cosine_accuracy@3 |
0.9945 |
cosine_accuracy@5 |
0.9994 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9723 |
cosine_precision@3 |
0.3315 |
cosine_precision@5 |
0.1999 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9723 |
cosine_recall@3 |
0.9945 |
cosine_recall@5 |
0.9994 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9873 |
cosine_mrr@10 |
0.9833 |
cosine_map@100 |
0.9833 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9704 |
cosine_accuracy@3 |
0.9945 |
cosine_accuracy@5 |
0.9994 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9704 |
cosine_precision@3 |
0.3315 |
cosine_precision@5 |
0.1999 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9704 |
cosine_recall@3 |
0.9945 |
cosine_recall@5 |
0.9994 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9867 |
cosine_mrr@10 |
0.9824 |
cosine_map@100 |
0.9824 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.971 |
cosine_accuracy@3 |
0.9951 |
cosine_accuracy@5 |
0.9994 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.971 |
cosine_precision@3 |
0.3317 |
cosine_precision@5 |
0.1999 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.971 |
cosine_recall@3 |
0.9951 |
cosine_recall@5 |
0.9994 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9873 |
cosine_mrr@10 |
0.9832 |
cosine_map@100 |
0.9832 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 14,593 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 11 tokens
- mean: 53.46 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 15.83 tokens
- max: 32 tokens
|
- Samples:
positive |
anchor |
Calories information of Hyderabadi Chicken Masala, based on different serving sizes: Serving 1 - 345 calories, Serving 2 - 580 calories, Serving 3 - 1220 calories, Serving 4 - 1450 calories |
What’s the calorie content of Hyderabadi Chicken Masala? |
Recipes that can be made using dried herb mix and onion powder: Chorizo Queso Soup, Cheesy Chicken & Broccoli |
What are some food items made using dried herb mix and onion powder? |
Recipes that can be made using roasted semolina/bombay rava and saffron: Rashmi's Kesari Bath, Pineapple Kesari Bath |
What recipes have roasted semolina/bombay rava and saffron in them? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
gradient_accumulation_steps
: 16
learning_rate
: 1e-05
num_train_epochs
: 20
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 1e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_32_cosine_map@100 |
dim_384_cosine_map@100 |
dim_64_cosine_map@100 |
0.3501 |
10 |
0.0066 |
- |
- |
- |
- |
- |
0.7002 |
20 |
0.0056 |
- |
- |
- |
- |
- |
0.9803 |
28 |
- |
0.9746 |
0.9771 |
0.9776 |
0.9758 |
0.9763 |
1.0503 |
30 |
0.0057 |
- |
- |
- |
- |
- |
1.4004 |
40 |
0.0048 |
- |
- |
- |
- |
- |
1.7505 |
50 |
0.0039 |
- |
- |
- |
- |
- |
1.9956 |
57 |
- |
0.9783 |
0.9787 |
0.9815 |
0.9788 |
0.9793 |
2.1007 |
60 |
0.0046 |
- |
- |
- |
- |
- |
2.4508 |
70 |
0.0035 |
- |
- |
- |
- |
- |
2.8009 |
80 |
0.0028 |
- |
- |
- |
- |
- |
2.9759 |
85 |
- |
0.9818 |
0.9811 |
0.9836 |
0.9803 |
0.9823 |
3.1510 |
90 |
0.0036 |
- |
- |
- |
- |
- |
3.5011 |
100 |
0.0033 |
- |
- |
- |
- |
- |
3.8512 |
110 |
0.0026 |
- |
- |
- |
- |
- |
3.9912 |
114 |
- |
0.9814 |
0.9818 |
0.9844 |
0.9814 |
0.9821 |
4.2013 |
120 |
0.0025 |
- |
- |
- |
- |
- |
4.5514 |
130 |
0.003 |
- |
- |
- |
- |
- |
4.9015 |
140 |
0.0027 |
- |
- |
- |
- |
- |
4.9716 |
142 |
- |
0.9825 |
0.9819 |
0.9844 |
0.9823 |
0.9825 |
5.2516 |
150 |
0.0024 |
- |
- |
- |
- |
- |
5.6018 |
160 |
0.0023 |
- |
- |
- |
- |
- |
5.9519 |
170 |
0.0024 |
- |
- |
- |
- |
- |
5.9869 |
171 |
- |
0.9831 |
0.9826 |
0.9846 |
0.9818 |
0.9831 |
6.3020 |
180 |
0.0025 |
- |
- |
- |
- |
- |
6.6521 |
190 |
0.0025 |
- |
- |
- |
- |
- |
6.9672 |
199 |
- |
0.9830 |
0.9825 |
0.9844 |
0.9823 |
0.9831 |
7.0022 |
200 |
0.0019 |
- |
- |
- |
- |
- |
7.3523 |
210 |
0.0022 |
- |
- |
- |
- |
- |
7.7024 |
220 |
0.0026 |
- |
- |
- |
- |
- |
7.9825 |
228 |
- |
0.9828 |
0.9825 |
0.9836 |
0.9821 |
0.9821 |
8.0525 |
230 |
0.0022 |
- |
- |
- |
- |
- |
8.4026 |
240 |
0.0021 |
- |
- |
- |
- |
- |
8.7527 |
250 |
0.0021 |
- |
- |
- |
- |
- |
8.9978 |
257 |
- |
0.9827 |
0.9826 |
0.9848 |
0.9827 |
0.9827 |
9.1028 |
260 |
0.0025 |
- |
- |
- |
- |
- |
9.4530 |
270 |
0.0022 |
- |
- |
- |
- |
- |
9.8031 |
280 |
0.0019 |
- |
- |
- |
- |
- |
9.9781 |
285 |
- |
0.9832 |
0.9833 |
0.9858 |
0.9825 |
0.9834 |
10.1532 |
290 |
0.0021 |
- |
- |
- |
- |
- |
10.5033 |
300 |
0.0019 |
- |
- |
- |
- |
- |
10.8534 |
310 |
0.0024 |
- |
- |
- |
- |
- |
10.9934 |
314 |
- |
0.9830 |
0.9827 |
0.9850 |
0.9825 |
0.9829 |
11.2035 |
320 |
0.0017 |
- |
- |
- |
- |
- |
11.5536 |
330 |
0.0017 |
- |
- |
- |
- |
- |
11.9037 |
340 |
0.0018 |
- |
- |
- |
- |
- |
11.9737 |
342 |
- |
0.9827 |
0.9835 |
0.9841 |
0.9826 |
0.9827 |
12.2538 |
350 |
0.0018 |
- |
- |
- |
- |
- |
12.6039 |
360 |
0.0018 |
- |
- |
- |
- |
- |
12.9540 |
370 |
0.0023 |
- |
- |
- |
- |
- |
12.9891 |
371 |
- |
0.9828 |
0.9834 |
0.9832 |
0.9826 |
0.9823 |
13.3042 |
380 |
0.0017 |
- |
- |
- |
- |
- |
13.6543 |
390 |
0.0018 |
- |
- |
- |
- |
- |
13.9694 |
399 |
- |
0.9830 |
0.9831 |
0.9838 |
0.9820 |
0.9826 |
14.0044 |
400 |
0.0016 |
- |
- |
- |
- |
- |
14.3545 |
410 |
0.0018 |
- |
- |
- |
- |
- |
14.7046 |
420 |
0.0018 |
- |
- |
- |
- |
- |
14.9847 |
428 |
- |
0.9827 |
0.9825 |
0.9832 |
0.9816 |
0.9826 |
15.0547 |
430 |
0.0018 |
- |
- |
- |
- |
- |
15.4048 |
440 |
0.0015 |
- |
- |
- |
- |
- |
15.7549 |
450 |
0.0017 |
- |
- |
- |
- |
- |
16.0 |
457 |
- |
0.9833 |
0.9836 |
0.9832 |
0.9822 |
0.9824 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}