metadata
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:14593
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Macro ingredients needed to cook Poha: Orange Carrot, French Bean, Fresh
Green Pea, Medium Poha, Red Onion, Curry Leaf, Green Chili Pepper
sentences:
- Can you list recipes that contain canned chickpea and canned black bean?
- What are the leading macro ingredients in Pigeon Pea Curry (Toor Dal)?
- What macro ingredients form the base of Poha?
- source_sentence: >-
I do have some good recommendations for you! Here are few good
alternatives to kashmiri pulao:
Kashmiri Dum Aloo, Shivani's Kashmiri Dum Aloo, Chicken Pulao, Chicken
Rezala, Chicken Kheema Masala, Hyderabadi Chicken Masala, Masala Khichdi,
Lentils and Rice (Dal Chawal), Homestyle Vegetable Pulao
sentences:
- What recipes are comparable to kashmiri pulao in flavor profile?
- >-
Can you give me step-by-step instructions to cook Hariyali Chicken
Curry?
- >-
What are some recipes that utilize baking soda and olive oil
effectively?
- source_sentence: 'Garnishing tip for Yellow Rice: Sprinkle with chopped cilantro.'
sentences:
- How can I make Yellow Rice look appealing with garnishes?
- Describe General Tso's Tofu for me.
- What are the best garnishing tips for Paneer Tikka Masala?
- source_sentence: >-
Recipes that can be made using green chili pepper and grated coconut:
Kerala Mix Vegetables (Aviyal), Carrot Poriyal, Cauliflower Poriyal,
Beetroot Poriyal, Maithilee's Fish Curry, Mix Vegetable Poriyal, Ivy Gourd
Curry (Tindora Masala), Spiced Indian Moth Beans (Matki Usal), Fish Curry,
Andhra Garlic Chicken
sentences:
- What are the culinary uses of ground pork and chayote?
- What are the dishes prepared using green cardamom and clove?
- >-
Can you suggest recipes that include green chili pepper and grated
coconut?
- source_sentence: >-
Recipes that can be made using red onion and paprika: Breakfast Potatoes
with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac &
Cheese, Tomato Chicken Curry
sentences:
- >-
Are there dishes that closely resemble spiced potatoes & fenugreek (aloo
methi)?
- >-
What recipes incorporate black pepper and habanero chili in their
ingredients?
- What are some ways to use red onion and paprika in recipes?
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.9704069050554871
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9926017262638718
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.998766954377312
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9993834771886559
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9704069050554871
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33086724208795726
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1997533908754624
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09993834771886559
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9704069050554871
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9926017262638718
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.998766954377312
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9993834771886559
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9865445143406266
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9822089131583582
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9822089131583582
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.9728729963008631
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9932182490752158
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.998766954377312
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9993834771886559
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9728729963008631
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3310727496917386
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1997533908754624
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09993834771886559
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9728729963008631
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9932182490752158
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.998766954377312
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9993834771886559
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9875922381599775
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9836107685984382
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9836107685984381
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.9722564734895192
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9944512946979038
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9993834771886559
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9993834771886559
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9722564734895192
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33148376489930126
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19987669543773118
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09993834771886559
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9722564734895192
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9944512946979038
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9993834771886559
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9993834771886559
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9873346466071089
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9832511302918208
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9832511302918209
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.9704069050554871
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9944512946979038
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9993834771886559
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9993834771886559
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9704069050554871
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33148376489930126
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19987669543773118
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09993834771886559
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9704069050554871
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9944512946979038
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9993834771886559
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9993834771886559
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9867057287670639
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9823982737361283
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9823982737361281
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 32
type: dim_32
metrics:
- type: cosine_accuracy@1
value: 0.971023427866831
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9950678175092479
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9993834771886559
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9993834771886559
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.971023427866831
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3316892725030826
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19987669543773118
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09993834771886559
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.971023427866831
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9950678175092479
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9993834771886559
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9993834771886559
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9872988931953259
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9831689272503082
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9831689272503081
name: Cosine Map@100
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v1")
sentences = [
'Recipes that can be made using red onion and paprika: Breakfast Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac & Cheese, Tomato Chicken Curry',
'What are some ways to use red onion and paprika in recipes?',
'Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9704 |
cosine_accuracy@3 |
0.9926 |
cosine_accuracy@5 |
0.9988 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9704 |
cosine_precision@3 |
0.3309 |
cosine_precision@5 |
0.1998 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9704 |
cosine_recall@3 |
0.9926 |
cosine_recall@5 |
0.9988 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9865 |
cosine_mrr@10 |
0.9822 |
cosine_map@100 |
0.9822 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9729 |
cosine_accuracy@3 |
0.9932 |
cosine_accuracy@5 |
0.9988 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9729 |
cosine_precision@3 |
0.3311 |
cosine_precision@5 |
0.1998 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9729 |
cosine_recall@3 |
0.9932 |
cosine_recall@5 |
0.9988 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9876 |
cosine_mrr@10 |
0.9836 |
cosine_map@100 |
0.9836 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9723 |
cosine_accuracy@3 |
0.9945 |
cosine_accuracy@5 |
0.9994 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9723 |
cosine_precision@3 |
0.3315 |
cosine_precision@5 |
0.1999 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9723 |
cosine_recall@3 |
0.9945 |
cosine_recall@5 |
0.9994 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9873 |
cosine_mrr@10 |
0.9833 |
cosine_map@100 |
0.9833 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9704 |
cosine_accuracy@3 |
0.9945 |
cosine_accuracy@5 |
0.9994 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.9704 |
cosine_precision@3 |
0.3315 |
cosine_precision@5 |
0.1999 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.9704 |
cosine_recall@3 |
0.9945 |
cosine_recall@5 |
0.9994 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9867 |
cosine_mrr@10 |
0.9824 |
cosine_map@100 |
0.9824 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.971 |
cosine_accuracy@3 |
0.9951 |
cosine_accuracy@5 |
0.9994 |
cosine_accuracy@10 |
0.9994 |
cosine_precision@1 |
0.971 |
cosine_precision@3 |
0.3317 |
cosine_precision@5 |
0.1999 |
cosine_precision@10 |
0.0999 |
cosine_recall@1 |
0.971 |
cosine_recall@3 |
0.9951 |
cosine_recall@5 |
0.9994 |
cosine_recall@10 |
0.9994 |
cosine_ndcg@10 |
0.9873 |
cosine_mrr@10 |
0.9832 |
cosine_map@100 |
0.9832 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 14,593 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 11 tokens
- mean: 53.46 tokens
- max: 512 tokens
|
- min: 7 tokens
- mean: 15.83 tokens
- max: 32 tokens
|
- Samples:
positive |
anchor |
Calories information of Hyderabadi Chicken Masala, based on different serving sizes: Serving 1 - 345 calories, Serving 2 - 580 calories, Serving 3 - 1220 calories, Serving 4 - 1450 calories |
What’s the calorie content of Hyderabadi Chicken Masala? |
Recipes that can be made using dried herb mix and onion powder: Chorizo Queso Soup, Cheesy Chicken & Broccoli |
What are some food items made using dried herb mix and onion powder? |
Recipes that can be made using roasted semolina/bombay rava and saffron: Rashmi's Kesari Bath, Pineapple Kesari Bath |
What recipes have roasted semolina/bombay rava and saffron in them? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64,
32
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
gradient_accumulation_steps
: 16
learning_rate
: 1e-05
num_train_epochs
: 20
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 1e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 20
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_32_cosine_map@100 |
dim_384_cosine_map@100 |
dim_64_cosine_map@100 |
0.3501 |
10 |
0.0066 |
- |
- |
- |
- |
- |
0.7002 |
20 |
0.0056 |
- |
- |
- |
- |
- |
0.9803 |
28 |
- |
0.9746 |
0.9771 |
0.9776 |
0.9758 |
0.9763 |
1.0503 |
30 |
0.0057 |
- |
- |
- |
- |
- |
1.4004 |
40 |
0.0048 |
- |
- |
- |
- |
- |
1.7505 |
50 |
0.0039 |
- |
- |
- |
- |
- |
1.9956 |
57 |
- |
0.9783 |
0.9787 |
0.9815 |
0.9788 |
0.9793 |
2.1007 |
60 |
0.0046 |
- |
- |
- |
- |
- |
2.4508 |
70 |
0.0035 |
- |
- |
- |
- |
- |
2.8009 |
80 |
0.0028 |
- |
- |
- |
- |
- |
2.9759 |
85 |
- |
0.9818 |
0.9811 |
0.9836 |
0.9803 |
0.9823 |
3.1510 |
90 |
0.0036 |
- |
- |
- |
- |
- |
3.5011 |
100 |
0.0033 |
- |
- |
- |
- |
- |
3.8512 |
110 |
0.0026 |
- |
- |
- |
- |
- |
3.9912 |
114 |
- |
0.9814 |
0.9818 |
0.9844 |
0.9814 |
0.9821 |
4.2013 |
120 |
0.0025 |
- |
- |
- |
- |
- |
4.5514 |
130 |
0.003 |
- |
- |
- |
- |
- |
4.9015 |
140 |
0.0027 |
- |
- |
- |
- |
- |
4.9716 |
142 |
- |
0.9825 |
0.9819 |
0.9844 |
0.9823 |
0.9825 |
5.2516 |
150 |
0.0024 |
- |
- |
- |
- |
- |
5.6018 |
160 |
0.0023 |
- |
- |
- |
- |
- |
5.9519 |
170 |
0.0024 |
- |
- |
- |
- |
- |
5.9869 |
171 |
- |
0.9831 |
0.9826 |
0.9846 |
0.9818 |
0.9831 |
6.3020 |
180 |
0.0025 |
- |
- |
- |
- |
- |
6.6521 |
190 |
0.0025 |
- |
- |
- |
- |
- |
6.9672 |
199 |
- |
0.9830 |
0.9825 |
0.9844 |
0.9823 |
0.9831 |
7.0022 |
200 |
0.0019 |
- |
- |
- |
- |
- |
7.3523 |
210 |
0.0022 |
- |
- |
- |
- |
- |
7.7024 |
220 |
0.0026 |
- |
- |
- |
- |
- |
7.9825 |
228 |
- |
0.9828 |
0.9825 |
0.9836 |
0.9821 |
0.9821 |
8.0525 |
230 |
0.0022 |
- |
- |
- |
- |
- |
8.4026 |
240 |
0.0021 |
- |
- |
- |
- |
- |
8.7527 |
250 |
0.0021 |
- |
- |
- |
- |
- |
8.9978 |
257 |
- |
0.9827 |
0.9826 |
0.9848 |
0.9827 |
0.9827 |
9.1028 |
260 |
0.0025 |
- |
- |
- |
- |
- |
9.4530 |
270 |
0.0022 |
- |
- |
- |
- |
- |
9.8031 |
280 |
0.0019 |
- |
- |
- |
- |
- |
9.9781 |
285 |
- |
0.9832 |
0.9833 |
0.9858 |
0.9825 |
0.9834 |
10.1532 |
290 |
0.0021 |
- |
- |
- |
- |
- |
10.5033 |
300 |
0.0019 |
- |
- |
- |
- |
- |
10.8534 |
310 |
0.0024 |
- |
- |
- |
- |
- |
10.9934 |
314 |
- |
0.9830 |
0.9827 |
0.9850 |
0.9825 |
0.9829 |
11.2035 |
320 |
0.0017 |
- |
- |
- |
- |
- |
11.5536 |
330 |
0.0017 |
- |
- |
- |
- |
- |
11.9037 |
340 |
0.0018 |
- |
- |
- |
- |
- |
11.9737 |
342 |
- |
0.9827 |
0.9835 |
0.9841 |
0.9826 |
0.9827 |
12.2538 |
350 |
0.0018 |
- |
- |
- |
- |
- |
12.6039 |
360 |
0.0018 |
- |
- |
- |
- |
- |
12.9540 |
370 |
0.0023 |
- |
- |
- |
- |
- |
12.9891 |
371 |
- |
0.9828 |
0.9834 |
0.9832 |
0.9826 |
0.9823 |
13.3042 |
380 |
0.0017 |
- |
- |
- |
- |
- |
13.6543 |
390 |
0.0018 |
- |
- |
- |
- |
- |
13.9694 |
399 |
- |
0.9830 |
0.9831 |
0.9838 |
0.9820 |
0.9826 |
14.0044 |
400 |
0.0016 |
- |
- |
- |
- |
- |
14.3545 |
410 |
0.0018 |
- |
- |
- |
- |
- |
14.7046 |
420 |
0.0018 |
- |
- |
- |
- |
- |
14.9847 |
428 |
- |
0.9827 |
0.9825 |
0.9832 |
0.9816 |
0.9826 |
15.0547 |
430 |
0.0018 |
- |
- |
- |
- |
- |
15.4048 |
440 |
0.0015 |
- |
- |
- |
- |
- |
15.7549 |
450 |
0.0017 |
- |
- |
- |
- |
- |
16.0 |
457 |
- |
0.9833 |
0.9836 |
0.9832 |
0.9822 |
0.9824 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}