Edit model card

test_trainer

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7380
  • Accuracy: 0.45

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 10 2.0828 0.1688
No log 2.0 20 2.0820 0.1688
No log 3.0 30 2.0807 0.175
No log 4.0 40 2.0789 0.1875
No log 5.0 50 2.0763 0.1938
No log 6.0 60 2.0733 0.1875
No log 7.0 70 2.0697 0.1875
No log 8.0 80 2.0656 0.1875
No log 9.0 90 2.0605 0.2125
No log 10.0 100 2.0540 0.2313
No log 11.0 110 2.0462 0.2625
No log 12.0 120 2.0369 0.2687
No log 13.0 130 2.0259 0.2687
No log 14.0 140 2.0117 0.2687
No log 15.0 150 1.9947 0.3125
No log 16.0 160 1.9763 0.2938
No log 17.0 170 1.9547 0.3125
No log 18.0 180 1.9313 0.325
No log 19.0 190 1.9075 0.35
No log 20.0 200 1.8817 0.3563
No log 21.0 210 1.8535 0.3812
No log 22.0 220 1.8244 0.4062
No log 23.0 230 1.7954 0.4188
No log 24.0 240 1.7664 0.4375
No log 25.0 250 1.7380 0.45

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AlCyede/emotion-classifier

Finetuned
(1670)
this model

Evaluation results