emotion-classifier / README.md
AlCyede's picture
End of training
a00b9dd verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: test_trainer
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45

test_trainer

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7380
  • Accuracy: 0.45

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 10 2.0828 0.1688
No log 2.0 20 2.0820 0.1688
No log 3.0 30 2.0807 0.175
No log 4.0 40 2.0789 0.1875
No log 5.0 50 2.0763 0.1938
No log 6.0 60 2.0733 0.1875
No log 7.0 70 2.0697 0.1875
No log 8.0 80 2.0656 0.1875
No log 9.0 90 2.0605 0.2125
No log 10.0 100 2.0540 0.2313
No log 11.0 110 2.0462 0.2625
No log 12.0 120 2.0369 0.2687
No log 13.0 130 2.0259 0.2687
No log 14.0 140 2.0117 0.2687
No log 15.0 150 1.9947 0.3125
No log 16.0 160 1.9763 0.2938
No log 17.0 170 1.9547 0.3125
No log 18.0 180 1.9313 0.325
No log 19.0 190 1.9075 0.35
No log 20.0 200 1.8817 0.3563
No log 21.0 210 1.8535 0.3812
No log 22.0 220 1.8244 0.4062
No log 23.0 230 1.7954 0.4188
No log 24.0 240 1.7664 0.4375
No log 25.0 250 1.7380 0.45

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1