AlaaHussien's picture
eye_diabetic
2264ca0 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: dinov2-base-finetuned-eye
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.968
          - name: F1
            type: f1
            value: 0.9678344915175675

dinov2-base-finetuned-eye

This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2262
  • Accuracy: 0.968
  • F1: 0.9678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3853 1.0 250 0.4918 0.874 0.8729
0.5345 2.0 500 0.4390 0.878 0.8771
0.4693 3.0 750 0.3857 0.88 0.8796
0.1933 4.0 1000 0.3444 0.894 0.8948
0.3146 5.0 1250 0.2456 0.936 0.9362
0.1832 6.0 1500 0.3369 0.924 0.9229
0.1407 7.0 1750 0.3425 0.946 0.9454
0.1462 8.0 2000 0.2864 0.948 0.9476
0.0905 9.0 2250 0.2177 0.956 0.9560
0.0859 10.0 2500 0.2262 0.968 0.9678

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0