|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
![](assets/logo.png) |
|
|
|
# Fast Segment Anything |
|
|
|
[[`Paper`](https://arxiv.org/pdf/2306.12156.pdf)] [[`Web Demo`](https://huggingface.co/spaces/An-619/FastSAM)] [[`Colab demo`](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)] [[`Model Zoo`](#model-checkpoints)] [[`BibTeX`](#citing-fastsam)] |
|
|
|
![FastSAM Speed](assets/head_fig.png) |
|
|
|
The **Fast Segment Anything Model(FastSAM)** is a CNN Segment Anything Model trained by only 2% of the SA-1B dataset published by SAM authors. The FastSAM achieve a comparable performance with |
|
the SAM method at **50× higher run-time speed**. |
|
|
|
![FastSAM design](assets/Overview.png) |
|
|
|
|
|
## Installation |
|
|
|
Clone the repository locally: |
|
|
|
``` |
|
git clone https://github.com/CASIA-IVA-Lab/FastSAM.git |
|
``` |
|
|
|
Create the conda env. The code requires `python>=3.7`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended. |
|
|
|
``` |
|
conda create -n FastSAM python=3.9 |
|
conda activate FastSAM |
|
``` |
|
|
|
Install the packages: |
|
|
|
``` |
|
cd FastSAM |
|
pip install -r requirements.txt |
|
``` |
|
|
|
Install clip: |
|
``` |
|
pip install git+https://github.com/openai/CLIP.git |
|
``` |
|
|
|
## <a name="GettingStarted"></a> Getting Started |
|
|
|
First download a [model checkpoint](#model-checkpoints). |
|
|
|
Then, you can run the scripts to try the everything mode and three prompt modes. |
|
|
|
|
|
``` |
|
# Everything mode |
|
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg |
|
``` |
|
|
|
``` |
|
# text prompt |
|
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --text_prompt "the yellow dog" |
|
``` |
|
|
|
``` |
|
# box prompt |
|
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --box_prompt [570,200,230,400] |
|
``` |
|
|
|
``` |
|
# points prompt |
|
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --point_prompt "[[520,360],[620,300]]" --point_label "[1,0]" |
|
``` |
|
You are also welcomed to try our Colab demo: [FastSAM_example.ipynb](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing). |
|
## Different Inference Options |
|
We provide various options for different purposes, details are in [MORE_USAGES.md](MORE_USAGES.md). |
|
|
|
## Web demo |
|
|
|
In the [web demo](https://huggingface.co/spaces/An-619/FastSAM), you can upload your own image, select input size from 512~1024, and choose whether to visualize in high quality. High quality visualization additionally shows more easily observable split edges. The web demo only supports Everything Mode now, other modes will try to support in the future. |
|
|
|
<!-- The [web demo](https://huggingface.co/spaces/An-619/FastSAM) can process your custom image using the Everything mode. --> |
|
|
|
![Web Demo](assets/web_demo.png) |
|
|
|
|
|
## <a name="Models"></a>Model Checkpoints |
|
|
|
Two model versions of the model are available with different sizes. Click the links below to download the checkpoint for the corresponding model type. |
|
|
|
- **`default` or `FastSAM`: [YOLOv8x based Segment Anything Model.](https://drive.google.com/file/d/1m1sjY4ihXBU1fZXdQ-Xdj-mDltW-2Rqv/view?usp=sharing)** |
|
- `FastSAM-s`: [YOLOv8s based Segment Anything Model.](https://drive.google.com/file/d/10XmSj6mmpmRb8NhXbtiuO9cTTBwR_9SV/view?usp=sharing) |
|
|
|
## Results |
|
|
|
All result were tested on a single NVIDIA GeForce RTX 3090. |
|
|
|
### 1. Inference time |
|
Running Speed under Different Point Prompt Numbers(ms). |
|
| method | params | 1 | 10 | 100 | E(16x16) | E(32x32*) | E(64x64) | |
|
|:------------------:|:--------:|:-----:|:-----:|:-----:|:----------:|:-----------:|:----------:| |
|
| SAM-H | 0.6G | 446 | 464 | 627 | 852 | 2099 | 6972 | |
|
| SAM-B | 136M | 110 | 125 | 230 | 432 | 1383 | 5417 | |
|
| FastSAM | 68M | 40 |40 | 40 | 40 | 40 | 40 | |
|
|
|
### 2. Memory usage |
|
|
|
| Dataset | Method | GPU Memory (MB) | |
|
|:-----------:|:-----------------:|:-----------------------:| |
|
| COCO 2017 | FastSAM | 2608 | |
|
| COCO 2017 | SAM-H | 7060 | |
|
| COCO 2017 | SAM-B | 4670 | |
|
|
|
### 3. Zero-shot Transfer Experiments |
|
|
|
#### Edge Detection |
|
Test on the BSDB500 dataset. |
|
|method | year| ODS | OIS | AP | R50 | |
|
|:----------:|:-------:|:--------:|:--------:|:------:|:-----:| |
|
| HED | 2015| .788 | .808 | .840 | .923 | |
|
| SAM | 2023| .768 | .786 | .794 | .928 | |
|
| FastSAM | 2023| .750 | .790 | .793 | .903 | |
|
|
|
#### Object Proposals |
|
##### COCO |
|
|method | AR10 | AR100 | AR1000 | AUC | |
|
|:---------------------------:|:------:|:-------:|--------:|:------:| |
|
| SAM-H E64 | 15.5 | 45.6 | 67.7 | 32.1 | |
|
| SAM-H E32 | 18.5 | 49.5 | 62.5 | 33.7 | |
|
| SAM-B E32 | 11.4 | 39.6 | 59.1 | 27.3 | |
|
| FastSAM | 15.7 | 47.3 | 63.7 | 32.2 | |
|
|
|
##### LVIS |
|
bbox AR@1000 |
|
| method | all | small | med. | large | |
|
|:---------------:|:-----:|:------:|:-----:|:------:| |
|
| ViTDet-H | 65.0 | 53.2 | 83.3 | 91.2 | |
|
zero-shot transfer methods |
|
| SAM-H E64 | 52.1 | 36.6 | 75.1 | 88.2 | |
|
| SAM-H E32 | 50.3 | 33.1 | 76.2 | 89.8 | |
|
| SAM-B E32 | 45.0 | 29.3 | 68.7 | 80.6 | |
|
| FastSAM | 57.1 | 44.3 | 77.1 | 85.3 | |
|
|
|
#### Instance Segmentation On COCO 2017 |
|
|
|
|method | AP | APS | APM | APL | |
|
|:--------------:|:--------:|:--------:|:------:|:-----:| |
|
| ViTDet-H | .510 | .320 | .543 | .689 | |
|
| SAM | .465 | .308 | .510 | .617 | |
|
| FastSAM | .379 | .239 | .434 | .500 | |
|
|
|
### 4. Performance Visulization |
|
Several segmentation results: |
|
#### Natural Images |
|
![Natural Images](assets/eightpic.png) |
|
#### Text to Mask |
|
![Text to Mask](assets/dog_clip.png) |
|
|
|
### 5.Downstream tasks |
|
|
|
The results of several downstream tasks to show the effectiveness. |
|
|
|
|
|
#### Anomaly Detection |
|
|
|
![Anomaly Detection](assets/anomaly.png) |
|
|
|
#### Salient Object Detection |
|
|
|
![Salient Object Detection](assets/salient.png) |
|
|
|
#### Building Extracting |
|
|
|
![Building Detection](assets/building.png) |
|
|
|
## License |
|
|
|
The model is licensed under the [Apache 2.0 license](LICENSE). |
|
|
|
|
|
## Acknowledgement |
|
|
|
- [Segment Anything](https://segment-anything.com/) provides the SA-1B dataset and the base codes. |
|
- [YOLOv8](https://github.com/ultralytics/ultralytics) provides codes and pre-trained models. |
|
- [YOLACT](https://arxiv.org/abs/2112.10003) provides powerful instance segmentation method. |
|
- [Grounded-Segment-Anything](https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything) provides a useful web demo template. |
|
|
|
|
|
## Citing FastSAM |
|
|
|
If you find this project useful for your research, please consider citing the following BibTeX entry. |
|
|
|
``` |
|
@misc{zhao2023fast, |
|
title={Fast Segment Anything}, |
|
author={Xu Zhao and Wenchao Ding and Yongqi An and Yinglong Du and Tao Yu and Min Li and Ming Tang and Jinqiao Wang}, |
|
year={2023}, |
|
eprint={2306.12156}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
<!-- <p align="center"> |
|
<a href="https://star-history.com/#geekyutao/Inpaint-Anything&Date"> |
|
<img src="https://api.star-history.com/svg?repos=geekyutao/Inpaint-Anything&type=Date" alt="Star History Chart"> |
|
</a> |
|
</p> --> |
|
|