|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: roberta-base-finetuned-ner-kmeans-twitter |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base-finetuned-ner-kmeans-twitter |
|
|
|
This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6645 |
|
- Precision: 0.6885 |
|
- Recall: 0.7665 |
|
- F1: 0.7254 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | |
|
| No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | |
|
| 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | |
|
| 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | |
|
| 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | |
|
| 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | |
|
| 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | |
|
| 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | |
|
| 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | |
|
| 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | |
|
| 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | |
|
| 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | |
|
| 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | |
|
| 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | |
|
| 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | |
|
| 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | |
|
| 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | |
|
| 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | |
|
| 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | |
|
| 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|