Augusto777's picture
End of training
29a0393 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-mascotas
    results: []

vit-base-patch16-224-mascotas

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5660
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6192 0.99 52 0.5660 1.0
0.2794 2.0 105 0.1524 1.0
0.2006 2.99 157 0.1143 0.9474
0.2106 4.0 210 0.0506 1.0
0.1077 4.99 262 0.0339 1.0
0.1379 6.0 315 0.1391 0.9474
0.1387 6.99 367 0.0711 0.9474
0.1342 8.0 420 0.0231 1.0
0.0803 8.99 472 0.0475 1.0
0.097 10.0 525 0.0190 1.0
0.0888 10.99 577 0.0220 1.0
0.0668 12.0 630 0.0078 1.0
0.0559 12.99 682 0.0073 1.0
0.0759 14.0 735 0.0055 1.0
0.081 14.99 787 0.0058 1.0
0.0806 16.0 840 0.0102 1.0
0.0568 16.99 892 0.0164 1.0
0.0696 18.0 945 0.0049 1.0
0.0692 18.99 997 0.0040 1.0
0.0929 20.0 1050 0.0030 1.0
0.1169 20.99 1102 0.0183 1.0
0.0385 22.0 1155 0.0576 0.9474
0.0564 22.99 1207 0.0512 0.9474
0.0206 24.0 1260 0.0025 1.0
0.0984 24.99 1312 0.0028 1.0
0.0368 26.0 1365 0.0037 1.0
0.0436 26.99 1417 0.0609 0.9474
0.0896 28.0 1470 0.0154 1.0
0.079 28.99 1522 0.0026 1.0
0.0211 30.0 1575 0.0045 1.0
0.0499 30.99 1627 0.0042 1.0
0.0137 32.0 1680 0.0043 1.0
0.0711 32.99 1732 0.0019 1.0
0.0369 34.0 1785 0.0021 1.0
0.0382 34.99 1837 0.0031 1.0
0.0785 36.0 1890 0.0029 1.0
0.0575 36.99 1942 0.0020 1.0
0.0158 38.0 1995 0.0019 1.0
0.0489 38.99 2047 0.0022 1.0
0.0511 39.62 2080 0.0023 1.0

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0