|
---
|
|
license: apache-2.0
|
|
base_model: google/vit-base-patch16-224
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: vit-base-patch16-224-mascotas
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# vit-base-patch16-224-mascotas
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.5660
|
|
- Accuracy: 1.0
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5.5e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 2
|
|
- total_train_batch_size: 16
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.05
|
|
- num_epochs: 40
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 0.6192 | 0.99 | 52 | 0.5660 | 1.0 |
|
|
| 0.2794 | 2.0 | 105 | 0.1524 | 1.0 |
|
|
| 0.2006 | 2.99 | 157 | 0.1143 | 0.9474 |
|
|
| 0.2106 | 4.0 | 210 | 0.0506 | 1.0 |
|
|
| 0.1077 | 4.99 | 262 | 0.0339 | 1.0 |
|
|
| 0.1379 | 6.0 | 315 | 0.1391 | 0.9474 |
|
|
| 0.1387 | 6.99 | 367 | 0.0711 | 0.9474 |
|
|
| 0.1342 | 8.0 | 420 | 0.0231 | 1.0 |
|
|
| 0.0803 | 8.99 | 472 | 0.0475 | 1.0 |
|
|
| 0.097 | 10.0 | 525 | 0.0190 | 1.0 |
|
|
| 0.0888 | 10.99 | 577 | 0.0220 | 1.0 |
|
|
| 0.0668 | 12.0 | 630 | 0.0078 | 1.0 |
|
|
| 0.0559 | 12.99 | 682 | 0.0073 | 1.0 |
|
|
| 0.0759 | 14.0 | 735 | 0.0055 | 1.0 |
|
|
| 0.081 | 14.99 | 787 | 0.0058 | 1.0 |
|
|
| 0.0806 | 16.0 | 840 | 0.0102 | 1.0 |
|
|
| 0.0568 | 16.99 | 892 | 0.0164 | 1.0 |
|
|
| 0.0696 | 18.0 | 945 | 0.0049 | 1.0 |
|
|
| 0.0692 | 18.99 | 997 | 0.0040 | 1.0 |
|
|
| 0.0929 | 20.0 | 1050 | 0.0030 | 1.0 |
|
|
| 0.1169 | 20.99 | 1102 | 0.0183 | 1.0 |
|
|
| 0.0385 | 22.0 | 1155 | 0.0576 | 0.9474 |
|
|
| 0.0564 | 22.99 | 1207 | 0.0512 | 0.9474 |
|
|
| 0.0206 | 24.0 | 1260 | 0.0025 | 1.0 |
|
|
| 0.0984 | 24.99 | 1312 | 0.0028 | 1.0 |
|
|
| 0.0368 | 26.0 | 1365 | 0.0037 | 1.0 |
|
|
| 0.0436 | 26.99 | 1417 | 0.0609 | 0.9474 |
|
|
| 0.0896 | 28.0 | 1470 | 0.0154 | 1.0 |
|
|
| 0.079 | 28.99 | 1522 | 0.0026 | 1.0 |
|
|
| 0.0211 | 30.0 | 1575 | 0.0045 | 1.0 |
|
|
| 0.0499 | 30.99 | 1627 | 0.0042 | 1.0 |
|
|
| 0.0137 | 32.0 | 1680 | 0.0043 | 1.0 |
|
|
| 0.0711 | 32.99 | 1732 | 0.0019 | 1.0 |
|
|
| 0.0369 | 34.0 | 1785 | 0.0021 | 1.0 |
|
|
| 0.0382 | 34.99 | 1837 | 0.0031 | 1.0 |
|
|
| 0.0785 | 36.0 | 1890 | 0.0029 | 1.0 |
|
|
| 0.0575 | 36.99 | 1942 | 0.0020 | 1.0 |
|
|
| 0.0158 | 38.0 | 1995 | 0.0019 | 1.0 |
|
|
| 0.0489 | 38.99 | 2047 | 0.0022 | 1.0 |
|
|
| 0.0511 | 39.62 | 2080 | 0.0023 | 1.0 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.36.2
|
|
- Pytorch 2.1.2+cu118
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.0
|
|
|