Bajiyo's picture
Upload tokenizer
a64b4bc verified
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
base_model: facebook/w2v-bert-2.0
model-index:
  - name: w2v-bert-2.0-malayalam-CV16.0
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: ml
          split: test
          args: ml
        metrics:
          - type: wer
            value: 0.5442294402211472
            name: Wer

w2v-bert-2.0-malayalam-CV16.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4511
  • Wer: 0.5442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.644 4.88 300 0.5119 0.6572
0.223 9.76 600 0.4511 0.5442

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1