Buseak's picture
update model card README.md
c5138fe
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: canine_vowelizer_0701_retrain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# canine_vowelizer_0701_retrain
This model is a fine-tuned version of [Buseak/canine_vowelizer_0701](https://huggingface.co/Buseak/canine_vowelizer_0701) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0066
- Precision: 1.0000
- Recall: 1.0000
- F1: 1.0000
- Accuracy: 0.9980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0816 | 1.0 | 976 | 0.0322 | 1.0000 | 1.0000 | 1.0000 | 0.9891 |
| 0.0776 | 2.0 | 1952 | 0.0273 | 0.9999 | 1.0000 | 1.0000 | 0.9906 |
| 0.0694 | 3.0 | 2928 | 0.0228 | 0.9999 | 1.0000 | 1.0000 | 0.9924 |
| 0.0617 | 4.0 | 3904 | 0.0181 | 1.0000 | 1.0000 | 1.0000 | 0.9939 |
| 0.0559 | 5.0 | 4880 | 0.0144 | 1.0000 | 1.0000 | 1.0000 | 0.9952 |
| 0.0477 | 6.0 | 5856 | 0.0120 | 1.0000 | 1.0000 | 1.0000 | 0.9962 |
| 0.0438 | 7.0 | 6832 | 0.0098 | 1.0000 | 1.0000 | 1.0000 | 0.9969 |
| 0.0397 | 8.0 | 7808 | 0.0080 | 1.0000 | 1.0000 | 1.0000 | 0.9975 |
| 0.0365 | 9.0 | 8784 | 0.0071 | 1.0000 | 1.0000 | 1.0000 | 0.9978 |
| 0.0328 | 10.0 | 9760 | 0.0066 | 1.0000 | 1.0000 | 1.0000 | 0.9980 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.13.3