Buseak's picture
update model card README.md
666aca9
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: spellcorrector_1009_v4
    results: []

spellcorrector_1009_v4

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3307
  • Precision: 0.9681
  • Recall: 0.9681
  • F1: 0.9681
  • Accuracy: 0.9573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2767 1.0 1951 0.2331 0.96 0.9562 0.9581 0.9383
0.2181 2.0 3902 0.2028 0.9524 0.9562 0.9543 0.9450
0.1776 3.0 5853 0.2019 0.96 0.9562 0.9581 0.9498
0.1519 4.0 7804 0.2038 0.9526 0.9602 0.9563 0.9498
0.1277 5.0 9755 0.2091 0.9567 0.9681 0.9624 0.9521
0.1133 6.0 11706 0.2187 0.9449 0.9562 0.9505 0.9540
0.1041 7.0 13657 0.2378 0.9762 0.9801 0.9781 0.9545
0.0906 8.0 15608 0.2371 0.9603 0.9641 0.9622 0.9558
0.0806 9.0 17559 0.2509 0.976 0.9721 0.9741 0.9532
0.0689 10.0 19510 0.2624 0.9681 0.9681 0.9681 0.9563
0.0623 11.0 21461 0.2623 0.976 0.9721 0.9741 0.9559
0.06 12.0 23412 0.2783 0.9643 0.9681 0.9662 0.9564
0.0537 13.0 25363 0.2938 0.976 0.9721 0.9741 0.9569
0.0507 14.0 27314 0.2976 0.9603 0.9641 0.9622 0.9565
0.0491 15.0 29265 0.3075 0.9681 0.9681 0.9681 0.9576
0.0426 16.0 31216 0.3182 0.9681 0.9681 0.9681 0.9571
0.0426 17.0 33167 0.3154 0.9681 0.9681 0.9681 0.9572
0.0387 18.0 35118 0.3266 0.9681 0.9681 0.9681 0.9573
0.0336 19.0 37069 0.3317 0.9681 0.9681 0.9681 0.9574
0.0341 20.0 39020 0.3307 0.9681 0.9681 0.9681 0.9573

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3