Edit model card

Image_Captioner

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0923
  • Rouge1: 25.0369
  • Rouge2: 10.1572
  • Rougel: 21.5244
  • Rougelsum: 24.0775
  • Gen Len: 18.9946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.253 1.0 836 0.1372 29.3958 12.2981 25.5129 27.9289 19.0
0.1361 2.0 1672 0.1151 25.8361 12.2894 23.7346 25.47 19.0
0.115 3.0 2508 0.1037 25.1859 11.9032 23.1038 24.8338 19.0
0.1027 4.0 3344 0.0942 26.0345 12.0324 23.4843 25.5426 19.0
0.0873 5.0 4180 0.0864 26.1657 11.685 23.6563 25.6247 19.0
0.0742 6.0 5016 0.0794 24.3621 10.5113 21.7192 23.8253 19.0
0.0646 7.0 5852 0.0740 24.711 11.194 22.2089 24.1793 19.0
0.0542 8.0 6688 0.0690 25.0339 10.8651 22.171 24.4106 19.0
0.046 9.0 7524 0.0650 25.0982 11.8399 22.701 24.623 18.9987
0.0386 10.0 8360 0.0623 26.2563 10.4715 22.5319 25.1412 18.9987
0.0317 11.0 9196 0.0591 26.4001 11.8031 23.1653 25.2856 18.9919
0.0273 12.0 10032 0.0587 25.6521 11.0174 22.7327 24.9068 18.9879
0.0231 13.0 10868 0.0583 26.7035 11.2021 23.0121 25.6384 18.9946
0.0195 14.0 11704 0.0592 25.5747 10.7424 22.3673 24.6944 19.0
0.0167 15.0 12540 0.0608 25.3022 10.163 21.9556 24.3587 18.9596
0.0142 16.0 13376 0.0614 25.0496 10.0656 21.7629 24.1094 18.9206
0.0119 17.0 14212 0.0618 26.0112 10.2519 22.1926 24.8873 18.8735
0.0102 18.0 15048 0.0653 25.6183 10.04 22.1136 24.5255 18.9125
0.0086 19.0 15884 0.0671 24.7352 9.6328 21.0675 23.7704 18.8694
0.0076 20.0 16720 0.0693 24.9512 9.6635 21.4761 23.9132 18.9112
0.0067 21.0 17556 0.0708 24.1732 9.158 20.3408 23.029 18.8358
0.0058 22.0 18392 0.0732 24.4503 9.4394 20.8584 23.4242 18.8035
0.0048 23.0 19228 0.0738 24.8844 9.9125 21.3509 23.9336 18.8089
0.0043 24.0 20064 0.0777 25.5401 10.1857 21.8328 24.4294 18.9058
0.0038 25.0 20900 0.0781 24.2235 9.0445 20.4463 23.0001 18.9166
0.0033 26.0 21736 0.0801 25.0127 9.8025 21.3116 23.9683 18.7308
0.0029 27.0 22572 0.0807 24.5765 9.6283 20.9556 23.4559 18.9166
0.0027 28.0 23408 0.0830 24.8389 9.8899 21.4027 23.9416 18.9233
0.0024 29.0 24244 0.0833 25.3695 10.162 21.7865 24.3737 18.7106
0.0022 30.0 25080 0.0832 24.8804 10.0825 21.4621 24.0326 18.9287
0.0021 31.0 25916 0.0853 25.0049 9.7036 21.3664 23.9173 18.9044
0.0019 32.0 26752 0.0855 25.0529 9.4994 21.2781 24.0076 18.9125
0.002 33.0 27588 0.0852 24.8417 9.9376 21.2526 23.8552 18.9031
0.0015 34.0 28424 0.0857 24.6359 9.5179 20.8941 23.4553 18.8937
0.0014 35.0 29260 0.0858 25.1156 10.1869 21.5805 23.9664 18.8156
0.0013 36.0 30096 0.0871 24.739 9.5548 21.15 23.749 18.9219
0.0011 37.0 30932 0.0884 24.774 9.7848 21.2467 23.833 18.9556
0.0011 38.0 31768 0.0889 25.2656 9.9796 21.517 24.1836 18.9462
0.0011 39.0 32604 0.0895 24.6627 9.3783 20.9288 23.5835 18.9704
0.001 40.0 33440 0.0906 25.1326 9.814 21.3593 24.0816 18.9260
0.0009 41.0 34276 0.0900 25.6889 10.3712 22.0588 24.695 18.9731
0.0008 42.0 35112 0.0911 24.6819 9.8307 21.1335 23.7053 18.9071
0.0008 43.0 35948 0.0905 24.4835 9.7292 21.017 23.5027 18.9623
0.0007 44.0 36784 0.0910 24.8203 9.5875 21.245 23.7718 18.9825
0.0007 45.0 37620 0.0914 25.1212 10.1024 21.6215 24.1061 18.9771
0.0006 46.0 38456 0.0914 25.1636 9.8127 21.5343 24.13 18.9475
0.0006 47.0 39292 0.0915 24.866 9.8427 21.3531 23.8643 18.9394
0.0006 48.0 40128 0.0916 25.064 10.049 21.5198 24.1158 18.9731
0.0005 49.0 40964 0.0923 24.8424 9.9718 21.3263 23.9031 18.9933
0.0005 50.0 41800 0.0923 25.0369 10.1572 21.5244 24.0775 18.9946

Framework versions

  • Transformers 4.37.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.1
Downloads last month
0
Safetensors
Model size
239M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.