metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: train
args: cord
metrics:
- name: Precision
type: precision
value: 0.9328908554572272
- name: Recall
type: recall
value: 0.9468562874251497
- name: F1
type: f1
value: 0.9398216939078752
- name: Accuracy
type: accuracy
value: 0.9516129032258065
layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2213
- Precision: 0.9329
- Recall: 0.9469
- F1: 0.9398
- Accuracy: 0.9516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.56 | 250 | 1.0664 | 0.6765 | 0.7530 | 0.7127 | 0.7818 |
1.4379 | 3.12 | 500 | 0.6115 | 0.8199 | 0.8518 | 0.8355 | 0.8646 |
1.4379 | 4.69 | 750 | 0.4192 | 0.8794 | 0.9004 | 0.8898 | 0.9028 |
0.4232 | 6.25 | 1000 | 0.3239 | 0.9180 | 0.9296 | 0.9238 | 0.9304 |
0.4232 | 7.81 | 1250 | 0.2840 | 0.9197 | 0.9341 | 0.9268 | 0.9389 |
0.2273 | 9.38 | 1500 | 0.2562 | 0.9217 | 0.9341 | 0.9279 | 0.9376 |
0.2273 | 10.94 | 1750 | 0.2574 | 0.9304 | 0.9401 | 0.9352 | 0.9410 |
0.157 | 12.5 | 2000 | 0.2327 | 0.9293 | 0.9439 | 0.9365 | 0.9482 |
0.157 | 14.06 | 2250 | 0.2217 | 0.9351 | 0.9491 | 0.9421 | 0.9520 |
0.1208 | 15.62 | 2500 | 0.2213 | 0.9329 | 0.9469 | 0.9398 | 0.9516 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1