|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: train |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9328908554572272 |
|
- name: Recall |
|
type: recall |
|
value: 0.9468562874251497 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9398216939078752 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9516129032258065 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2213 |
|
- Precision: 0.9329 |
|
- Recall: 0.9469 |
|
- F1: 0.9398 |
|
- Accuracy: 0.9516 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.56 | 250 | 1.0664 | 0.6765 | 0.7530 | 0.7127 | 0.7818 | |
|
| 1.4379 | 3.12 | 500 | 0.6115 | 0.8199 | 0.8518 | 0.8355 | 0.8646 | |
|
| 1.4379 | 4.69 | 750 | 0.4192 | 0.8794 | 0.9004 | 0.8898 | 0.9028 | |
|
| 0.4232 | 6.25 | 1000 | 0.3239 | 0.9180 | 0.9296 | 0.9238 | 0.9304 | |
|
| 0.4232 | 7.81 | 1250 | 0.2840 | 0.9197 | 0.9341 | 0.9268 | 0.9389 | |
|
| 0.2273 | 9.38 | 1500 | 0.2562 | 0.9217 | 0.9341 | 0.9279 | 0.9376 | |
|
| 0.2273 | 10.94 | 1750 | 0.2574 | 0.9304 | 0.9401 | 0.9352 | 0.9410 | |
|
| 0.157 | 12.5 | 2000 | 0.2327 | 0.9293 | 0.9439 | 0.9365 | 0.9482 | |
|
| 0.157 | 14.06 | 2250 | 0.2217 | 0.9351 | 0.9491 | 0.9421 | 0.9520 | |
|
| 0.1208 | 15.62 | 2500 | 0.2213 | 0.9329 | 0.9469 | 0.9398 | 0.9516 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|