SecBERT-APTNER / README.md
Anonymous
Upload folder using huggingface_hub
49fbb41
metadata
license: apache-2.0
base_model: jackaduma/SecBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: aptner_secbert
    results: []

aptner_secbert

This model is a fine-tuned version of jackaduma/SecBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3230
  • Precision: 0.5124
  • Recall: 0.5356
  • F1: 0.5237
  • Accuracy: 0.9142

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6662 0.59 500 0.3587 0.4744 0.4743 0.4744 0.9113
0.3128 1.19 1000 0.3230 0.5124 0.5356 0.5237 0.9142
0.2374 1.78 1500 0.3429 0.4750 0.5714 0.5188 0.9083
0.1904 2.37 2000 0.3650 0.4945 0.5598 0.5251 0.9090
0.1521 2.97 2500 0.3765 0.4713 0.5783 0.5193 0.9055
0.1101 3.56 3000 0.4023 0.4727 0.5744 0.5186 0.9067
0.1019 4.15 3500 0.4322 0.4726 0.5571 0.5114 0.9056
0.0764 4.74 4000 0.4595 0.4592 0.5897 0.5163 0.9039
0.0619 5.34 4500 0.4755 0.4740 0.5783 0.5210 0.9062
0.059 5.93 5000 0.4514 0.5055 0.5649 0.5335 0.9126
0.0429 6.52 5500 0.5036 0.474 0.5666 0.5162 0.9065
0.0425 7.12 6000 0.5249 0.4767 0.5726 0.5203 0.9064
0.0349 7.71 6500 0.5537 0.4634 0.5744 0.5129 0.9038
0.0338 8.3 7000 0.5301 0.4839 0.5672 0.5223 0.9089
0.0255 8.9 7500 0.5545 0.4731 0.5735 0.5185 0.9059
0.0253 9.49 8000 0.5526 0.4789 0.5702 0.5206 0.9074

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1