test-NERv3 / README.md
Carlos
End of training
20dc3b8
|
raw
history blame
1.92 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: DTNLS/test-NERv3
    results: []
library_name: peft

DTNLS/test-NERv3

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1525
  • Precision: 0.0031
  • Recall: 0.0128
  • F1: 0.0050
  • Accuracy: 0.1087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.1814 1.0 14 2.1525 0.0031 0.0128 0.0050 0.1087

Framework versions

  • PEFT 0.4.0
  • Transformers 4.32.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3