test-NERv3 / README.md
CarlosDataAnalysis's picture
Model save
111beb8
|
raw
history blame
1.52 kB
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test-NERv3
    results: []

test-NERv3

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1950
  • Precision: 0.0009
  • Recall: 0.0026
  • F1: 0.0014
  • Accuracy: 0.1510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.2261 1.0 14 2.1950 0.0009 0.0026 0.0014 0.1510

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.14.1