DandinPower's picture
End of training
2f9cf9a verified
|
raw
history blame
4.38 kB
metadata
language:
  - en
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - nycu-112-2-datamining-hw2
  - generated_from_trainer
datasets:
  - DandinPower/review_cleanonlytitleandtext
metrics:
  - accuracy
model-index:
  - name: deberta-v3-base-cotat
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: DandinPower/review_cleanonlytitleandtext
          type: DandinPower/review_cleanonlytitleandtext
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.623

deberta-v3-base-cotat

This model is a fine-tuned version of microsoft/deberta-v3-base on the DandinPower/review_cleanonlytitleandtext dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4985
  • Accuracy: 0.623
  • Macro F1: 0.6247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
1.0223 0.14 500 0.9610 0.592 0.5971
1.0108 0.29 1000 0.9378 0.6044 0.6083
0.9323 0.43 1500 0.9605 0.589 0.5652
0.9651 0.57 2000 0.9845 0.5797 0.5687
0.928 0.71 2500 0.9521 0.5907 0.5656
0.9205 0.86 3000 0.9073 0.603 0.5740
0.9243 1.0 3500 0.8876 0.616 0.6113
0.8545 1.14 4000 0.8631 0.6267 0.6290
0.8267 1.29 4500 0.8908 0.624 0.6185
0.8175 1.43 5000 0.8771 0.6173 0.6222
0.8613 1.57 5500 0.9564 0.6209 0.6081
0.8138 1.71 6000 0.9246 0.6089 0.6063
0.7314 1.86 6500 0.9030 0.6329 0.6313
0.8287 2.0 7000 0.8753 0.6211 0.6235
0.6963 2.14 7500 0.9700 0.6247 0.6257
0.7034 2.29 8000 0.9592 0.6234 0.6220
0.679 2.43 8500 0.8994 0.6233 0.6272
0.7207 2.57 9000 1.0013 0.6236 0.6183
0.6992 2.71 9500 0.9385 0.6169 0.6219
0.7032 2.86 10000 0.9247 0.6366 0.6364
0.6949 3.0 10500 0.9615 0.6239 0.6281
0.5581 3.14 11000 1.0439 0.6217 0.6267
0.55 3.29 11500 1.1205 0.6259 0.6232
0.5496 3.43 12000 1.1122 0.6226 0.6267
0.5462 3.57 12500 1.0692 0.6251 0.6263
0.5121 3.71 13000 1.1563 0.6197 0.6214
0.531 3.86 13500 1.1123 0.6261 0.6256
0.5256 4.0 14000 1.1194 0.6247 0.6264
0.3908 4.14 14500 1.3631 0.6204 0.6210
0.4439 4.29 15000 1.4810 0.6204 0.6211
0.4252 4.43 15500 1.4454 0.6211 0.6217
0.3721 4.57 16000 1.5315 0.6204 0.6231
0.369 4.71 16500 1.4797 0.6184 0.6190
0.3907 4.86 17000 1.4857 0.6219 0.6234
0.4022 5.0 17500 1.4985 0.623 0.6247

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2