|
--- |
|
language: |
|
- zh |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- nycu-112-2-deeplearning-hw2 |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
datasets: |
|
- DandinPower/ZH-Reading-Comprehension-Mistral-Instruct |
|
model-index: |
|
- name: mistral_7b_lora_completion_only |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mistral_7b_lora_completion_only |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the DandinPower/ZH-Reading-Comprehension-Mistral-Instruct dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1344 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 700 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.1996 | 0.3690 | 250 | 0.1814 | |
|
| 0.1856 | 0.7380 | 500 | 0.1344 | |
|
| 0.1515 | 1.1070 | 750 | 0.1724 | |
|
| 0.1547 | 1.4760 | 1000 | 0.1977 | |
|
| 0.0953 | 1.8450 | 1250 | 0.1641 | |
|
| 0.0788 | 2.2140 | 1500 | 0.1450 | |
|
| 0.0715 | 2.5830 | 1750 | 0.1359 | |
|
| 0.0646 | 2.9520 | 2000 | 0.1427 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |