metadata
license: apache-2.0
base_model: JackFram/llama-68m
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: recreate_llama_68M_vanilla
results: []
recreate_llama_68M_vanilla
This model is a fine-tuned version of JackFram/llama-68m on the anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json dataset. It achieves the following results on the evaluation set:
- Loss: 2.3558
- Accuracy: 0.5820
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.406 | 0.2644 | 1000 | 3.2345 | 0.5035 |
2.8119 | 0.5288 | 2000 | 2.8216 | 0.5365 |
2.6076 | 0.7932 | 3000 | 2.6553 | 0.5501 |
2.4729 | 1.0576 | 4000 | 2.5761 | 0.5581 |
2.4323 | 1.3221 | 5000 | 2.5363 | 0.5617 |
2.3824 | 1.5865 | 6000 | 2.4913 | 0.5660 |
2.3719 | 1.8509 | 7000 | 2.4664 | 0.5686 |
2.3021 | 2.1153 | 8000 | 2.4404 | 0.5716 |
2.2848 | 2.3797 | 9000 | 2.4080 | 0.5755 |
2.2653 | 2.6441 | 10000 | 2.3834 | 0.5785 |
2.2447 | 2.9085 | 11000 | 2.3603 | 0.5811 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1