DunnBC22's picture
Update README.md
91db226
metadata
license: apache-2.0
base_model: hustvl/yolos-small
tags:
  - generated_from_trainer
  - biology
  - medical
model-index:
  - name: yolos-small-Stomata_Cells
    results: []
language:
  - en
pipeline_tag: object-detection

yolos-small-Stomata_Cells

This model is a fine-tuned version of hustvl/yolos-small.

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Stomata%20Cells/Stomata_Cells_Object_Detection_YOLOS.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/Francesco/stomata-cells

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Metric Name IoU Area maxDets Metric Value
Average Precision (AP) IoU=0.50:0.95 all maxDets=100 0.340
Average Precision (AP) IoU=0.50 all maxDets=100 0.571
Average Precision (AP) IoU=0.75 all maxDets=100 0.361
Average Precision (AP) IoU=0.50:0.95 small maxDets=100 0.155
Average Precision (AP) IoU=0.50:0.95 medium maxDets=100 0.220
Average Precision (AP) IoU=0.50:0.95 large maxDets=100 0.498
Average Recall (AR) IoU=0.50:0.95 all maxDets= 1 0.146
Average Recall (AR) IoU=0.50:0.95 all maxDets= 10 0.423
Average Recall (AR) IoU=0.50:0.95 all maxDets=100 0.547
Average Recall (AR) IoU=0.50:0.95 small maxDets=100 0.275
Average Recall (AR) IoU=0.50:0.95 medium maxDets=100 0.439
Average Recall (AR) IoU=0.50:0.95 large maxDets=100 0.764

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3