|
--- |
|
license: llama2 |
|
--- |
|
This model is a merged model of [meta Llama2](https://ai.meta.com/llama/) |
|
and [EdwardYu/llama-2-7b-MedQuAD](https://huggingface.co/EdwardYu/llama-2-7b-MedQuAD). |
|
|
|
## Usage |
|
|
|
```python |
|
model_name = "EdwardYu/llama-2-7b-MedQuAD-merged" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
load_in_4bit=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
), |
|
) |
|
|
|
question = 'What are the side effects or risks of Glucagon?' |
|
inputs = tokenizer(question, return_tensors="pt").to("cuda") |
|
outputs = model.generate(inputs=inputs.input_ids, max_length=1024) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
To run model inference faster, you can load in 16-bits without 4-bit quantization. |
|
```python |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained(model, adapter) |
|
``` |