FarhadMadadzade's picture
Upload WhisperForConditionalGeneration
921be49 verified
|
raw
history blame
2.69 kB
metadata
language:
  - en
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - QEC
metrics:
  - wer
model-index:
  - name: whisper-small-quartr
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Quartr Earnings Calls
          type: QEC
          args: 'config: en, split: test'
        metrics:
          - type: wer
            value: 32.834424695977546
            name: Wer

whisper-small-quartr

This model is a fine-tuned version of openai/whisper-small on the Quartr Earnings Calls dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6429
  • Wer: 32.8344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8.120528078446462e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 84
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6771 0.32 100 0.6577 25.7437
0.6533 0.64 200 0.6025 34.6804
0.5793 0.96 300 0.5784 24.3530
0.3872 1.28 400 0.5856 32.9592
0.4447 1.61 500 0.5646 23.2429
0.414 1.93 600 0.5616 70.7016
0.2489 2.25 700 0.5816 35.2666
0.2863 2.57 800 0.5853 24.7583
0.2698 2.89 900 0.5844 32.7409
0.1646 3.21 1000 0.6182 27.7892
0.174 3.53 1100 0.6228 36.2021
0.2021 3.85 1200 0.6269 35.9775
0.2239 4.17 1300 0.6367 35.2666
0.1551 4.49 1400 0.6420 32.4478
0.1351 4.82 1500 0.6429 32.8344

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2