|
---
|
|
license: apache-2.0
|
|
base_model: Flamenco43/MatBERT
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- conll2003
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: MatBERT-conll2003
|
|
results:
|
|
- task:
|
|
name: Token Classification
|
|
type: token-classification
|
|
dataset:
|
|
name: conll2003
|
|
type: conll2003
|
|
config: conll2003
|
|
split: validation
|
|
args: conll2003
|
|
metrics:
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.8569527611443779
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.8670481319421071
|
|
- name: F1
|
|
type: f1
|
|
value: 0.8619708884055547
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.9732876445621277
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# MatBERT-conll2003
|
|
|
|
This model is a fine-tuned version of [Flamenco43/MatBERT](https://huggingface.co/Flamenco43/MatBERT) on the conll2003 dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.0971
|
|
- Precision: 0.8570
|
|
- Recall: 0.8670
|
|
- F1: 0.8620
|
|
- Accuracy: 0.9733
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 4
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| 0.1055 | 1.0 | 1756 | 0.0971 | 0.8570 | 0.8670 | 0.8620 | 0.9733 |
|
|
| 0.047 | 2.0 | 3512 | 0.0992 | 0.8910 | 0.8803 | 0.8856 | 0.9770 |
|
|
| 0.0206 | 3.0 | 5268 | 0.1094 | 0.9015 | 0.8930 | 0.8972 | 0.9787 |
|
|
| 0.0075 | 4.0 | 7024 | 0.1126 | 0.8958 | 0.9000 | 0.8979 | 0.9793 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.2.1+cu118
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.19.1
|
|
|