MatBERT-conll2003 / README.md
Flamenco43's picture
MatBERT-conll2003
7c96ed4 verified
---
license: apache-2.0
base_model: Flamenco43/MatBERT
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: MatBERT-conll2003
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8569527611443779
- name: Recall
type: recall
value: 0.8670481319421071
- name: F1
type: f1
value: 0.8619708884055547
- name: Accuracy
type: accuracy
value: 0.9732876445621277
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MatBERT-conll2003
This model is a fine-tuned version of [Flamenco43/MatBERT](https://huggingface.co/Flamenco43/MatBERT) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0971
- Precision: 0.8570
- Recall: 0.8670
- F1: 0.8620
- Accuracy: 0.9733
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1055 | 1.0 | 1756 | 0.0971 | 0.8570 | 0.8670 | 0.8620 | 0.9733 |
| 0.047 | 2.0 | 3512 | 0.0992 | 0.8910 | 0.8803 | 0.8856 | 0.9770 |
| 0.0206 | 3.0 | 5268 | 0.1094 | 0.9015 | 0.8930 | 0.8972 | 0.9787 |
| 0.0075 | 4.0 | 7024 | 0.1126 | 0.8958 | 0.9000 | 0.8979 | 0.9793 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1