|
--- |
|
library_name: transformers |
|
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputs/out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small |
|
type: sharegpt |
|
conversation: chatml |
|
- path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned |
|
type: sharegpt |
|
conversation: chatml |
|
- path: NewEden/Gryphe-Sonnet-3.5-35k-Subset |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Nitral-AI/Reasoning-1shot_ShareGPT |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Nitral-AI/GU_Instruct-ShareGPT |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Nitral-AI/Medical_Instruct-ShareGPT |
|
type: sharegpt |
|
conversation: chatml |
|
- path: AquaV/Resistance-Sharegpt |
|
type: sharegpt |
|
conversation: chatml |
|
- path: AquaV/US-Army-Survival-Sharegpt |
|
type: sharegpt |
|
conversation: chatml |
|
- path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
chat_template: chatml |
|
|
|
val_set_size: 0.002 |
|
output_dir: ./outputs/out |
|
|
|
adapter: |
|
lora_r: |
|
lora_alpha: |
|
lora_dropout: |
|
lora_target_linear: |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
wandb_project: mini8B |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: mini8B |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
weight_decay: 0.05 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_ratio: 0.1 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 2 |
|
|
|
debug: |
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
fsdp: |
|
fsdp_config: |
|
|
|
special_tokens: |
|
pad_token: <pad> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out |
|
|
|
This model is a fine-tuned version of [Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML](https://huggingface.co/Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5341 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 91 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.2548 | 0.0022 | 1 | 2.0884 | |
|
| 0.7712 | 0.2503 | 114 | 1.6165 | |
|
| 0.7566 | 0.5005 | 228 | 1.5734 | |
|
| 0.7241 | 0.7508 | 342 | 1.5579 | |
|
| 0.6994 | 1.0011 | 456 | 1.5401 | |
|
| 0.6186 | 1.2499 | 570 | 1.5433 | |
|
| 0.6102 | 1.5003 | 684 | 1.5366 | |
|
| 0.5926 | 1.7507 | 798 | 1.5341 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|