license: apache-2.0
base_model: climatebert/distilroberta-base-climate-f
tags:
- generated_from_trainer
model-index:
- name: SECTOR-multilabel-climatebert
results: []
datasets:
- GIZ/policy_classification
co2_eq_emissions:
emissions: 23.3572576873636
source: codecarbon
training_type: fine-tuning
on_cloud: true
cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
ram_total_size: 12.6747894287109
hours_used: 0.529
hardware_used: 1 x Tesla T4
SECTOR-multilabel-climatebert
This model is a fine-tuned version of climatebert/distilroberta-base-climate-f on the Policy-Classification dataset.
The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training It achieves the following results on the evaluation set:
- Loss: 0.6028
- Precision-micro: 0.6395
- Precision-samples: 0.7543
- Precision-weighted: 0.6475
- Recall-micro: 0.7762
- Recall-samples: 0.8583
- Recall-weighted: 0.7762
- F1-micro: 0.7012
- F1-samples: 0.7655
- F1-weighted: 0.7041
Model description
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict Sector labels - Agriculture,Buildings, Coastal Zone,Cross-Cutting Area,Disaster Risk Management (DRM),Economy-wide,Education,Energy,Environment,Health,Industries,LULUCF/Forestry,Social Development,Tourism, Transport,Urban,Waste,Water
Intended uses & limitations
More information needed
Training and evaluation data
Training Dataset: 10031
Class Positive Count of Class Action 5416 Plans 2140 Policy 1396 Target 2911 Validation Dataset: 932
Class Positive Count of Class Action 513 Plans 198 Policy 122 Target 256
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.07e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6978 | 1.0 | 633 | 0.5968 | 0.3948 | 0.5274 | 0.4982 | 0.7873 | 0.8675 | 0.7873 | 0.5259 | 0.5996 | 0.5793 |
0.485 | 2.0 | 1266 | 0.5255 | 0.5089 | 0.6365 | 0.5469 | 0.7984 | 0.8749 | 0.7984 | 0.6216 | 0.6907 | 0.6384 |
0.3657 | 3.0 | 1899 | 0.5248 | 0.4984 | 0.6617 | 0.5397 | 0.8141 | 0.8769 | 0.8141 | 0.6183 | 0.7066 | 0.6393 |
0.2585 | 4.0 | 2532 | 0.5457 | 0.5807 | 0.7148 | 0.5992 | 0.8007 | 0.8752 | 0.8007 | 0.6732 | 0.7449 | 0.6813 |
0.1841 | 5.0 | 3165 | 0.5551 | 0.6016 | 0.7426 | 0.6192 | 0.7937 | 0.8677 | 0.7937 | 0.6844 | 0.7590 | 0.6917 |
0.1359 | 6.0 | 3798 | 0.5913 | 0.6349 | 0.7506 | 0.6449 | 0.7844 | 0.8676 | 0.7844 | 0.7018 | 0.7667 | 0.7057 |
0.1133 | 7.0 | 4431 | 0.6028 | 0.6395 | 0.7543 | 0.6475 | 0.7762 | 0.8583 | 0.7762 | 0.7012 | 0.7655 | 0.7041 |
label | precision | recall | f1-score | support |
---|---|---|---|---|
Action | 0.828 | 0.807 | 0.817 | 513.0 |
Plans | 0.560 | 0.707 | 0.625 | 198.0 |
Policy | 0.727 | 0.786 | 0.756 | 122.0 |
Target | 0.741 | 0.886 | 0.808 | 256.0 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.02335 kg of CO2
- Hours Used: 0.529 hours
Training Hardware
- On Cloud: yes
- GPU Model: 1 x Tesla T4
- CPU Model: Intel(R) Xeon(R) CPU @ 2.00GHz
- RAM Size: 12.67 GB
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2