Edit model card

microsoft-deberta-v3-large_ner_wnut_17

This model is a fine-tuned version of microsoft/deberta-v3-large on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2199
  • Precision: 0.7671
  • Recall: 0.6184
  • F1: 0.6848
  • Accuracy: 0.9667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.1751 0.6884 0.5682 0.6225 0.9601
No log 2.0 426 0.1702 0.7351 0.6208 0.6732 0.9655
0.1003 3.0 639 0.1954 0.7360 0.6136 0.6693 0.9656
0.1003 4.0 852 0.2113 0.7595 0.6232 0.6846 0.9669
0.015 5.0 1065 0.2199 0.7671 0.6184 0.6848 0.9667

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gladiator/microsoft-deberta-v3-large_ner_wnut_17

Finetunes
1 model

Dataset used to train Gladiator/microsoft-deberta-v3-large_ner_wnut_17

Space using Gladiator/microsoft-deberta-v3-large_ner_wnut_17 1

Evaluation results