Gladiator's picture
update model card README.md
0acbd12
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: microsoft-deberta-v3-large_ner_wnut_17
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.7670623145400594
          - name: Recall
            type: recall
            value: 0.618421052631579
          - name: F1
            type: f1
            value: 0.6847682119205298
          - name: Accuracy
            type: accuracy
            value: 0.9666942096230853

microsoft-deberta-v3-large_ner_wnut_17

This model is a fine-tuned version of microsoft/deberta-v3-large on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2199
  • Precision: 0.7671
  • Recall: 0.6184
  • F1: 0.6848
  • Accuracy: 0.9667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.1751 0.6884 0.5682 0.6225 0.9601
No log 2.0 426 0.1702 0.7351 0.6208 0.6732 0.9655
0.1003 3.0 639 0.1954 0.7360 0.6136 0.6693 0.9656
0.1003 4.0 852 0.2113 0.7595 0.6232 0.6846 0.9669
0.015 5.0 1065 0.2199 0.7671 0.6184 0.6848 0.9667

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1