GuCuChiara's picture
Training complete
705c48d
|
raw
history blame
2.54 kB
metadata
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model
    results: []

NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1766
  • Precision: 0.5977
  • Recall: 0.5730
  • F1: 0.5851
  • Accuracy: 0.9539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.1981 0.2581 0.2239 0.2398 0.9266
No log 2.0 142 0.1616 0.4514 0.3692 0.4062 0.9444
No log 3.0 213 0.1514 0.5233 0.4727 0.4967 0.9482
No log 4.0 284 0.1863 0.4522 0.5546 0.4982 0.9352
No log 5.0 355 0.1582 0.5665 0.5245 0.5447 0.9498
No log 6.0 426 0.1571 0.5915 0.5305 0.5593 0.9529
No log 7.0 497 0.1652 0.5849 0.5586 0.5714 0.9527
0.1311 8.0 568 0.1676 0.5858 0.5738 0.5798 0.9528
0.1311 9.0 639 0.1748 0.5990 0.5562 0.5768 0.9537
0.1311 10.0 710 0.1766 0.5977 0.5730 0.5851 0.9539

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1