|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NLP-HIBA_BiomedNLP-BiomedBERT-base-pretrained-model |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1766 |
|
- Precision: 0.5977 |
|
- Recall: 0.5730 |
|
- F1: 0.5851 |
|
- Accuracy: 0.9539 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 71 | 0.1981 | 0.2581 | 0.2239 | 0.2398 | 0.9266 | |
|
| No log | 2.0 | 142 | 0.1616 | 0.4514 | 0.3692 | 0.4062 | 0.9444 | |
|
| No log | 3.0 | 213 | 0.1514 | 0.5233 | 0.4727 | 0.4967 | 0.9482 | |
|
| No log | 4.0 | 284 | 0.1863 | 0.4522 | 0.5546 | 0.4982 | 0.9352 | |
|
| No log | 5.0 | 355 | 0.1582 | 0.5665 | 0.5245 | 0.5447 | 0.9498 | |
|
| No log | 6.0 | 426 | 0.1571 | 0.5915 | 0.5305 | 0.5593 | 0.9529 | |
|
| No log | 7.0 | 497 | 0.1652 | 0.5849 | 0.5586 | 0.5714 | 0.9527 | |
|
| 0.1311 | 8.0 | 568 | 0.1676 | 0.5858 | 0.5738 | 0.5798 | 0.9528 | |
|
| 0.1311 | 9.0 | 639 | 0.1748 | 0.5990 | 0.5562 | 0.5768 | 0.9537 | |
|
| 0.1311 | 10.0 | 710 | 0.1766 | 0.5977 | 0.5730 | 0.5851 | 0.9539 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|