GuCuChiara's picture
Training complete
2864450
|
raw
history blame
2.28 kB
metadata
license: mit
base_model: emilyalsentzer/Bio_ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model
    results: []

NLP-HIBA_DisTEMIST_fine_tuned_ClinicalBERT-pretrained-model

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2634
  • Precision: 0.4559
  • Recall: 0.4616
  • F1: 0.4587
  • Accuracy: 0.9334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 71 0.2011 0.3859 0.3371 0.3598 0.9297
No log 2.0 142 0.1970 0.3956 0.3894 0.3925 0.9283
No log 3.0 213 0.2041 0.4140 0.3977 0.4057 0.9307
No log 4.0 284 0.2167 0.4379 0.4110 0.4240 0.9348
No log 5.0 355 0.2293 0.4430 0.4159 0.4290 0.9338
No log 6.0 426 0.2447 0.4615 0.4375 0.4492 0.9356
No log 7.0 497 0.2587 0.4601 0.4500 0.4550 0.9342
0.0861 8.0 568 0.2634 0.4559 0.4616 0.4587 0.9334

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1