HamzaSidhu786's picture
End of training
4787ab6 verified
metadata
base_model: google/mt5-small
tags:
  - generated_from_trainer
datasets:
  - govreport-summarization
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-govreport-summarization
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: govreport-summarization
          type: govreport-summarization
          config: document
          split: train
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 5.4727

mt5-small-finetuned-govreport-summarization

This model is a fine-tuned version of google/mt5-small on the govreport-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9193
  • Rouge1: 5.4727
  • Rouge2: 1.8064
  • Rougel: 4.7904
  • Rougelsum: 5.1785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
8.1803 1.0 225 3.4063 4.8262 1.0677 4.1029 4.6438
4.1012 2.0 450 3.2004 4.888 1.2529 4.0737 4.6698
3.8386 3.0 675 3.1341 5.0027 1.1715 4.1397 4.7616
3.6986 4.0 900 3.0698 5.3287 1.6223 4.6697 5.0159
3.6007 5.0 1125 3.0346 5.5318 1.7741 4.8195 5.2351
3.5376 6.0 1350 3.0039 4.5345 1.3055 4.0118 4.3259
3.4794 7.0 1575 2.9845 4.755 1.5096 4.2156 4.5376
3.4373 8.0 1800 2.9699 4.6843 1.409 4.0942 4.4492
3.4007 9.0 2025 2.9569 5.5517 1.8103 4.8226 5.2639
3.3788 10.0 2250 2.9415 5.4873 1.8689 4.8027 5.2162
3.3549 11.0 2475 2.9429 5.3814 1.7672 4.7337 5.1079
3.3386 12.0 2700 2.9338 5.4238 1.7718 4.7339 5.1216
3.3195 13.0 2925 2.9224 5.4666 1.8941 4.79 5.1824
3.311 14.0 3150 2.9223 5.4197 1.7975 4.7752 5.1176
3.3027 15.0 3375 2.9202 5.494 1.8446 4.7876 5.1981
3.2961 16.0 3600 2.9193 5.4727 1.8064 4.7904 5.1785

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1