HeConE / README.md
vitvit's picture
Update README.md
9a08573 verified
|
raw
history blame
2.44 kB
metadata
license: apache-2.0
language:
  - he
library_name: transformers
pipeline_tag: token-classification
datasets:
  - HeTree/MevakerConcSen

Hebrew Conclusion Extraction Model (based on token classification)

How to use

from transformers import  RobertaTokenizerFast, AutoModelForTokenClassification
from datasets  import load_dataset

def split_into_windows(examples):
    return {'sentences': [examples['sentence']], 'labels': [examples["label"]]}

def concatenate_dict_value(dict_obj):
    concatenated_dict = {}
    for key, value in dict_obj.items():
        flattened_list = []
        for sublist in value:
            if len(flattened_list) + len(sublist) <= 512:
                for item in sublist:
                    flattened_list.append(item)
            else:
                print("Not all sentences were processed due to length")
                break
        concatenated_dict[key] = flattened_list
    return concatenated_dict

def tokenize_and_align_labels(examples):
    tokenized_inputs = tokenizer(examples["sentences"], truncation=True, max_length=512)
    tokeized_inp_concat = concatenate_dict_value(tokenized_inputs)
    tokenized_inputs["input_ids"] = tokeized_inp_concat['input_ids']
    tokenized_inputs["attention_mask"] = tokeized_inp_concat['attention_mask']
    word_ids = tokenized_inputs["input_ids"]
    labels = []
    count = 0
    for word_idx in word_ids:
        if word_idx == 2:
            labels.append(examples[f"labels"][count])
            count = count + 1
        else:
            labels.append(-100)
    tokenized_inputs["labels"] = labels
    return tokenized_inputs

model = AutoModelForTokenClassification.from_pretrained('HeTree/HeConE') 
tokenizer = RobertaTokenizerFast.from_pretrained('HeTree/HeConE')
raw_dataset = load_dataset('HeTree/MevakerConcSen')
window_size = 5
raw_dataset_window = raw_dataset.map(split_into_windows, batched=True, batch_size=window_size, remove_columns=raw_dataset['train'].column_names)
tokenized_dataset = raw_dataset_window.map(tokenize_and_align_labels, batched=False)

Citing

If you use HeConE in your research, please cite HeRo: RoBERTa and Longformer Hebrew Language Models.

@article{shalumov2023hero,
      title={HeRo: RoBERTa and Longformer Hebrew Language Models}, 
      author={Vitaly Shalumov and Harel Haskey},
      year={2023},
      journal={arXiv:2304.11077},
}