JamesJayamuni's picture
End of training
720a505 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: emotion_classification_v1.1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train[:5000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.575
          - name: Precision
            type: precision
            value: 0.6064414347689876
          - name: Recall
            type: recall
            value: 0.575
          - name: F1
            type: f1
            value: 0.5730570699748332

emotion_classification_v1.1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2449
  • Accuracy: 0.575
  • Precision: 0.6064
  • Recall: 0.575
  • F1: 0.5731

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 40 1.8287 0.325 0.2995 0.325 0.2695
No log 2.0 80 1.5621 0.475 0.4171 0.475 0.4104
No log 3.0 120 1.4485 0.4188 0.3786 0.4188 0.3710
No log 4.0 160 1.4040 0.4313 0.5179 0.4313 0.3963
No log 5.0 200 1.3333 0.4938 0.5016 0.4938 0.4654
No log 6.0 240 1.3076 0.4688 0.4698 0.4688 0.4437
No log 7.0 280 1.3531 0.4813 0.5289 0.4813 0.4834
No log 8.0 320 1.3118 0.4688 0.4606 0.4688 0.4619
No log 9.0 360 1.3326 0.4938 0.5629 0.4938 0.4744
No log 10.0 400 1.2693 0.4938 0.4825 0.4938 0.4777
No log 11.0 440 1.2310 0.55 0.5747 0.55 0.5441
No log 12.0 480 1.2673 0.5375 0.5418 0.5375 0.5316
1.0804 13.0 520 1.3161 0.5125 0.5321 0.5125 0.5048
1.0804 14.0 560 1.2517 0.55 0.5550 0.55 0.5430
1.0804 15.0 600 1.3344 0.5 0.5023 0.5 0.4848

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1