|
---
|
|
license: apache-2.0
|
|
base_model: google/vit-base-patch16-224-in21k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: emotion_classification_v1.1
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: train[:5000]
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.575
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.6064414347689876
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.575
|
|
- name: F1
|
|
type: f1
|
|
value: 0.5730570699748332
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# emotion_classification_v1.1
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.2449
|
|
- Accuracy: 0.575
|
|
- Precision: 0.6064
|
|
- Recall: 0.575
|
|
- F1: 0.5731
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 15
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
|
| No log | 1.0 | 40 | 1.8287 | 0.325 | 0.2995 | 0.325 | 0.2695 |
|
|
| No log | 2.0 | 80 | 1.5621 | 0.475 | 0.4171 | 0.475 | 0.4104 |
|
|
| No log | 3.0 | 120 | 1.4485 | 0.4188 | 0.3786 | 0.4188 | 0.3710 |
|
|
| No log | 4.0 | 160 | 1.4040 | 0.4313 | 0.5179 | 0.4313 | 0.3963 |
|
|
| No log | 5.0 | 200 | 1.3333 | 0.4938 | 0.5016 | 0.4938 | 0.4654 |
|
|
| No log | 6.0 | 240 | 1.3076 | 0.4688 | 0.4698 | 0.4688 | 0.4437 |
|
|
| No log | 7.0 | 280 | 1.3531 | 0.4813 | 0.5289 | 0.4813 | 0.4834 |
|
|
| No log | 8.0 | 320 | 1.3118 | 0.4688 | 0.4606 | 0.4688 | 0.4619 |
|
|
| No log | 9.0 | 360 | 1.3326 | 0.4938 | 0.5629 | 0.4938 | 0.4744 |
|
|
| No log | 10.0 | 400 | 1.2693 | 0.4938 | 0.4825 | 0.4938 | 0.4777 |
|
|
| No log | 11.0 | 440 | 1.2310 | 0.55 | 0.5747 | 0.55 | 0.5441 |
|
|
| No log | 12.0 | 480 | 1.2673 | 0.5375 | 0.5418 | 0.5375 | 0.5316 |
|
|
| 1.0804 | 13.0 | 520 | 1.3161 | 0.5125 | 0.5321 | 0.5125 | 0.5048 |
|
|
| 1.0804 | 14.0 | 560 | 1.2517 | 0.55 | 0.5550 | 0.55 | 0.5430 |
|
|
| 1.0804 | 15.0 | 600 | 1.3344 | 0.5 | 0.5023 | 0.5 | 0.4848 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.19.1
|
|
|