JamesJayamuni's picture
End of training
32ee398 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: emotion_classification_v1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train[:5000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.59375
          - name: Precision
            type: precision
            value: 0.6599395444120348
          - name: Recall
            type: recall
            value: 0.59375
          - name: F1
            type: f1
            value: 0.5919790409999833

emotion_classification_v1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1926
  • Accuracy: 0.5938
  • Precision: 0.6599
  • Recall: 0.5938
  • F1: 0.5920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 80 1.6474 0.3375 0.3120 0.3375 0.2259
No log 2.0 160 1.4434 0.4625 0.5606 0.4625 0.4112
No log 3.0 240 1.3266 0.4875 0.5296 0.4875 0.4516
No log 4.0 320 1.2547 0.5375 0.5836 0.5375 0.5342
No log 5.0 400 1.2195 0.5875 0.6815 0.5875 0.5900
No log 6.0 480 1.1895 0.5563 0.5709 0.5563 0.5424
1.2914 7.0 560 1.1572 0.5437 0.5607 0.5437 0.5431
1.2914 8.0 640 1.1822 0.5563 0.5602 0.5563 0.5515
1.2914 9.0 720 1.2712 0.55 0.5695 0.55 0.5530
1.2914 10.0 800 1.2196 0.5625 0.5701 0.5625 0.5559
1.2914 11.0 880 1.2460 0.5312 0.5584 0.5312 0.5357
1.2914 12.0 960 1.2473 0.5563 0.5710 0.5563 0.5553
0.5247 13.0 1040 1.2438 0.575 0.5908 0.575 0.5761
0.5247 14.0 1120 1.3033 0.5312 0.5391 0.5312 0.5305
0.5247 15.0 1200 1.2928 0.5625 0.5861 0.5625 0.5673

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1