|
---
|
|
license: apache-2.0
|
|
base_model: google/vit-base-patch16-224-in21k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: emotion_classification_v1
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: train[:5000]
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.59375
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.6599395444120348
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.59375
|
|
- name: F1
|
|
type: f1
|
|
value: 0.5919790409999833
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# emotion_classification_v1
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.1926
|
|
- Accuracy: 0.5938
|
|
- Precision: 0.6599
|
|
- Recall: 0.5938
|
|
- F1: 0.5920
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 15
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
|
| No log | 1.0 | 80 | 1.6474 | 0.3375 | 0.3120 | 0.3375 | 0.2259 |
|
|
| No log | 2.0 | 160 | 1.4434 | 0.4625 | 0.5606 | 0.4625 | 0.4112 |
|
|
| No log | 3.0 | 240 | 1.3266 | 0.4875 | 0.5296 | 0.4875 | 0.4516 |
|
|
| No log | 4.0 | 320 | 1.2547 | 0.5375 | 0.5836 | 0.5375 | 0.5342 |
|
|
| No log | 5.0 | 400 | 1.2195 | 0.5875 | 0.6815 | 0.5875 | 0.5900 |
|
|
| No log | 6.0 | 480 | 1.1895 | 0.5563 | 0.5709 | 0.5563 | 0.5424 |
|
|
| 1.2914 | 7.0 | 560 | 1.1572 | 0.5437 | 0.5607 | 0.5437 | 0.5431 |
|
|
| 1.2914 | 8.0 | 640 | 1.1822 | 0.5563 | 0.5602 | 0.5563 | 0.5515 |
|
|
| 1.2914 | 9.0 | 720 | 1.2712 | 0.55 | 0.5695 | 0.55 | 0.5530 |
|
|
| 1.2914 | 10.0 | 800 | 1.2196 | 0.5625 | 0.5701 | 0.5625 | 0.5559 |
|
|
| 1.2914 | 11.0 | 880 | 1.2460 | 0.5312 | 0.5584 | 0.5312 | 0.5357 |
|
|
| 1.2914 | 12.0 | 960 | 1.2473 | 0.5563 | 0.5710 | 0.5563 | 0.5553 |
|
|
| 0.5247 | 13.0 | 1040 | 1.2438 | 0.575 | 0.5908 | 0.575 | 0.5761 |
|
|
| 0.5247 | 14.0 | 1120 | 1.3033 | 0.5312 | 0.5391 | 0.5312 | 0.5305 |
|
|
| 0.5247 | 15.0 | 1200 | 1.2928 | 0.5625 | 0.5861 | 0.5625 | 0.5673 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.19.1
|
|
- Tokenizers 0.19.1
|
|
|