|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: filipealmeida/Mistral-7B-Instruct-v0.1-sharded |
|
model-index: |
|
- name: mistral7b-finetune-10k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mistral7b-finetune-10k |
|
|
|
This model is a fine-tuned version of [filipealmeida/Mistral-7B-Instruct-v0.1-sharded](https://huggingface.co/filipealmeida/Mistral-7B-Instruct-v0.1-sharded) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0138 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 2500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.8342 | 0.08 | 100 | 1.4509 | |
|
| 1.3118 | 0.16 | 200 | 1.2525 | |
|
| 1.2008 | 0.24 | 300 | 1.2086 | |
|
| 1.1544 | 0.33 | 400 | 1.1871 | |
|
| 1.1421 | 0.41 | 500 | 1.1651 | |
|
| 1.1222 | 0.49 | 600 | 1.1497 | |
|
| 1.1234 | 0.57 | 700 | 1.1232 | |
|
| 1.0913 | 0.65 | 800 | 1.1089 | |
|
| 1.0872 | 0.73 | 900 | 1.0906 | |
|
| 1.0396 | 0.82 | 1000 | 1.0784 | |
|
| 1.0634 | 0.9 | 1100 | 1.0701 | |
|
| 1.007 | 0.98 | 1200 | 1.0616 | |
|
| 0.9981 | 1.06 | 1300 | 1.0545 | |
|
| 0.9518 | 1.14 | 1400 | 1.0453 | |
|
| 0.939 | 1.22 | 1500 | 1.0386 | |
|
| 0.9791 | 1.31 | 1600 | 1.0356 | |
|
| 0.977 | 1.39 | 1700 | 1.0302 | |
|
| 0.9287 | 1.47 | 1800 | 1.0233 | |
|
| 0.9393 | 1.55 | 1900 | 1.0209 | |
|
| 0.915 | 1.63 | 2000 | 1.0184 | |
|
| 0.95 | 1.71 | 2100 | 1.0155 | |
|
| 0.9542 | 1.8 | 2200 | 1.0150 | |
|
| 0.9272 | 1.88 | 2300 | 1.0146 | |
|
| 0.9381 | 1.96 | 2400 | 1.0142 | |
|
| 0.9358 | 2.04 | 2500 | 1.0138 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.0 |