metadata
license: apache-2.0
BrainTransformers: SNN-LLM
Based on BrainTransformers, BrainGPTForCausalLM is a Large Language Model (LLM) implemented using Spiking Neural Networks (SNN). Our technical report will be uploaded to arXiv as soon as possible. We plan to further optimize the model at the operator level and adapt it for hardware compatibility, enabling BrainGPTForCausalLM to be deployed on more energy-efficient SNN hardware devices.
Model Availability
- The current pre-trained model parameters have been published on ModelScope: DataLinguistic/BrainTransformers-3B-Chat
- The current pre-trained model parameters have been published on Hugging Face.LumenscopeAI/BrainTransformers-3B-Chat
Repository
The github link is: LumenScopeAI/BrainTransformers-SNN-LLM
Model Performance
Below are the performance metrics of our 3B model on various benchmarks:
Task Category | Dataset | Performance |
---|---|---|
General Tasks | MMLU | 65.6 |
MMLU-pro | 34.6 | |
MMLU-redux | 63.7 | |
BBH | 56.3 | |
ARC-C | 56.5 | |
Trurhfulqa | 48.9 | |
Winogrande | 71.1 | |
Hellaswag | 74.6 | |
Math and Science Tasks | GPQA | 26.3 |
Theoremqa | 27.4 | |
MATH | 42.6 | |
MMLU-stem | 62.5 | |
GSM8K | 79.1 | |
Coding Tasks | HumanEval | 42.1 |
HumanEval+ | 36.0 | |
MBPP | 57.1 | |
MBPP+ | 49.4 | |
MultiPL-E | 41.2 | |
Multilingual Tasks | Multi-Exam | 54.6 |
Multi-Understanding | 76.6 | |
Multi-Mathematics | 48.9 | |
Multi-Translation | 29.3 |
Usage
Generate Text
import torch
from transformers import AutoTokenizer, BrainGPTForCausalLM
model_path = "/path/to/your/model"
model = BrainGPTForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def generate_text(messages, max_new_tokens=50):
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Example usage
messages = [
{"role": "system", "content": "You are a knowledgeable assistant."},
{"role": "user", "content": "Explain the Pythagorean theorem."}
]
response = generate_text(messages)
print(response)