akkky02's picture
Upload folder using huggingface_hub
ca5f7f5 verified
|
raw
history blame
3.84 kB
metadata
license: other
base_model: Qwen/Qwen1.5-1.8B
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Qwen1.5_1.8B_ledgar
    results: []

Qwen1.5_1.8B_ledgar

This model is a fine-tuned version of Qwen/Qwen1.5-1.8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5064
  • Accuracy: 0.8669
  • F1 Macro: 0.7902
  • F1 Micro: 0.8669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro
1.3077 0.11 100 1.0945 0.7277 0.5771 0.7277
0.8627 0.21 200 0.8368 0.7907 0.6657 0.7907
0.7179 0.32 300 0.7824 0.7971 0.6862 0.7971
0.6961 0.43 400 0.6952 0.8138 0.6992 0.8138
0.745 0.53 500 0.6719 0.8121 0.7034 0.8121
0.6505 0.64 600 0.6220 0.834 0.7469 0.834
0.5914 0.75 700 0.6110 0.8362 0.7411 0.8362
0.5837 0.85 800 0.5767 0.8385 0.7413 0.8385
0.5218 0.96 900 0.5365 0.849 0.7703 0.849
0.2632 1.07 1000 0.5504 0.8562 0.7684 0.8562
0.2607 1.17 1100 0.5497 0.8525 0.7657 0.8525
0.274 1.28 1200 0.5439 0.8584 0.7746 0.8584
0.2216 1.39 1300 0.5687 0.8563 0.7754 0.8563
0.2044 1.49 1400 0.5385 0.861 0.7820 0.861
0.2508 1.6 1500 0.5658 0.8577 0.7711 0.8577
0.2513 1.71 1600 0.5367 0.8589 0.7872 0.8589
0.2787 1.81 1700 0.5133 0.8653 0.7903 0.8653
0.2357 1.92 1800 0.5064 0.8669 0.7902 0.8669
0.049 2.03 1900 0.5344 0.8719 0.7978 0.8719
0.0298 2.13 2000 0.5762 0.8737 0.7992 0.8737
0.0427 2.24 2100 0.5961 0.8708 0.7976 0.8708
0.036 2.35 2200 0.6128 0.8728 0.7988 0.8728
0.0551 2.45 2300 0.6165 0.8708 0.7976 0.8708
0.0392 2.56 2400 0.6023 0.8749 0.8038 0.8749
0.0364 2.67 2500 0.6168 0.8729 0.8001 0.8729
0.0416 2.77 2600 0.6103 0.8753 0.8048 0.8753
0.0353 2.88 2700 0.6118 0.8749 0.8054 0.8749
0.0308 2.99 2800 0.6114 0.875 0.8057 0.875

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2