File size: 4,874 Bytes
df2042f 48040bb df2042f 48040bb 2572a63 48040bb df2042f 48040bb df2042f b6a47d9 5d93b89 df2042f 96033cd 48040bb df2042f 48040bb 8b1e3d1 48040bb 8b1e3d1 df2042f 48040bb df2042f 48040bb 8b1e3d1 48040bb 8b1e3d1 df2042f 7609a59 f7969d5 6d7c924 6fbee03 b46a771 6dcdecd 06b1f28 03f2a75 08943d1 f5bd078 ecc8bbd 359ab79 409d507 b082a73 4bd70ed 630fff0 cd40fda b6a47d9 5d93b89 df2042f 48040bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
- named entity recognition
- bert-base finetuned
- umair akram
model-index:
- name: MUmairAB/bert-ner
results: []
datasets:
- conll2003
language:
- en
metrics:
- seqeval
library_name: transformers
pipeline_tag: token-classification
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# MUmairAB/bert-ner
The model training notebook is available on my [GitHub Repo](https://github.com/MUmairAB/BERT-based-NER-using-HuggingFace-Transformers/tree/main).
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on [Cnoll2003](https://huggingface.co/datasets/conll2003) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0003
- Validation Loss: 0.0880
- Epoch: 19
## How to use this model
```
#Install the transformers library
!pip install transformers
#Import the pipeline
from transformers import pipeline
#Import the model from HuggingFace
checkpoint = "MUmairAB/bert-ner"
model = pipeline(task="token-classification",
model=checkpoint)
#Use the model
raw_text = "My name is umair and i work at Swits AI in Antarctica."
model(raw_text)
```
## Model description
Model: "tf_bert_for_token_classification"
```
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bert (TFBertMainLayer) multiple 107719680
dropout_37 (Dropout) multiple 0
classifier (Dense) multiple 6921
=================================================================
Total params: 107,726,601
Trainable params: 107,726,601
Non-trainable params: 0
_________________________________________________________________
```
## Intended uses & limitations
This model can be used for named entity recognition tasks. It is trained on [Conll2003](https://huggingface.co/datasets/conll2003) dataset. The model can classify four types of named entities:
1. persons,
2. locations,
3. organizations, and
4. names of miscellaneous entities that do not belong to the previous three groups.
## Training and evaluation data
The model is evaluated on [seqeval](https://github.com/chakki-works/seqeval) metric and the result is as follows:
```
{'LOC': {'precision': 0.9655361050328227,
'recall': 0.9608056614044638,
'f1': 0.9631650750341064,
'number': 1837},
'MISC': {'precision': 0.8789144050104384,
'recall': 0.913232104121475,
'f1': 0.8957446808510638,
'number': 922},
'ORG': {'precision': 0.9075144508670521,
'recall': 0.9366144668158091,
'f1': 0.9218348623853211,
'number': 1341},
'PER': {'precision': 0.962011771000535,
'recall': 0.9761129207383279,
'f1': 0.9690110482349771,
'number': 1842},
'overall_precision': 0.9374068554396423,
'overall_recall': 0.9527095254123191,
'overall_f1': 0.944996244053084,
'overall_accuracy': 0.9864013657502796}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17560, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.1775 | 0.0635 | 0 |
| 0.0470 | 0.0559 | 1 |
| 0.0278 | 0.0603 | 2 |
| 0.0174 | 0.0603 | 3 |
| 0.0124 | 0.0615 | 4 |
| 0.0077 | 0.0722 | 5 |
| 0.0060 | 0.0731 | 6 |
| 0.0038 | 0.0757 | 7 |
| 0.0043 | 0.0731 | 8 |
| 0.0041 | 0.0735 | 9 |
| 0.0019 | 0.0724 | 10 |
| 0.0019 | 0.0786 | 11 |
| 0.0010 | 0.0843 | 12 |
| 0.0008 | 0.0814 | 13 |
| 0.0011 | 0.0867 | 14 |
| 0.0008 | 0.0883 | 15 |
| 0.0005 | 0.0861 | 16 |
| 0.0005 | 0.0869 | 17 |
| 0.0003 | 0.0880 | 18 |
| 0.0003 | 0.0880 | 19 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3 |