wcosmas's picture
End of training
98dc985 verified
|
raw
history blame
3.76 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9411764705882353

vit-base-patch16-224-in21k-finetuned-papsmear

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2523
  • Accuracy: 0.9412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6954 0.9935 38 1.6106 0.3456
1.2818 1.9869 76 1.2412 0.5735
1.0023 2.9804 114 0.9875 0.7132
0.7163 4.0 153 0.8399 0.6912
0.5173 4.9935 191 0.6546 0.8162
0.5057 5.9869 229 0.6251 0.8309
0.4313 6.9804 267 0.5696 0.8309
0.325 8.0 306 0.5507 0.8309
0.3811 8.9935 344 0.4429 0.8676
0.2341 9.9869 382 0.4222 0.875
0.3082 10.9804 420 0.6573 0.7721
0.2571 12.0 459 0.4229 0.8897
0.2374 12.9935 497 0.4233 0.875
0.128 13.9869 535 0.3671 0.8971
0.1718 14.9804 573 0.3430 0.8971
0.16 16.0 612 0.4104 0.875
0.1096 16.9935 650 0.2920 0.9118
0.1408 17.9869 688 0.2630 0.9044
0.113 18.9804 726 0.3084 0.8824
0.1272 20.0 765 0.2523 0.9412
0.119 20.9935 803 0.4254 0.8824
0.1068 21.9869 841 0.3519 0.8971
0.0723 22.9804 879 0.3293 0.9191
0.0769 24.0 918 0.2613 0.9265
0.095 24.9935 956 0.2609 0.9412
0.0863 25.9869 994 0.2650 0.9265
0.0795 26.9804 1032 0.2978 0.9118
0.0564 28.0 1071 0.2737 0.9191
0.0562 28.9935 1109 0.2941 0.9191
0.0751 29.8039 1140 0.3111 0.9191

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1