|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-base-patch16-224-in21k-finetuned-papsmear |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9411764705882353 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-patch16-224-in21k-finetuned-papsmear |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2523 |
|
- Accuracy: 0.9412 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 1.6954 | 0.9935 | 38 | 1.6106 | 0.3456 | |
|
| 1.2818 | 1.9869 | 76 | 1.2412 | 0.5735 | |
|
| 1.0023 | 2.9804 | 114 | 0.9875 | 0.7132 | |
|
| 0.7163 | 4.0 | 153 | 0.8399 | 0.6912 | |
|
| 0.5173 | 4.9935 | 191 | 0.6546 | 0.8162 | |
|
| 0.5057 | 5.9869 | 229 | 0.6251 | 0.8309 | |
|
| 0.4313 | 6.9804 | 267 | 0.5696 | 0.8309 | |
|
| 0.325 | 8.0 | 306 | 0.5507 | 0.8309 | |
|
| 0.3811 | 8.9935 | 344 | 0.4429 | 0.8676 | |
|
| 0.2341 | 9.9869 | 382 | 0.4222 | 0.875 | |
|
| 0.3082 | 10.9804 | 420 | 0.6573 | 0.7721 | |
|
| 0.2571 | 12.0 | 459 | 0.4229 | 0.8897 | |
|
| 0.2374 | 12.9935 | 497 | 0.4233 | 0.875 | |
|
| 0.128 | 13.9869 | 535 | 0.3671 | 0.8971 | |
|
| 0.1718 | 14.9804 | 573 | 0.3430 | 0.8971 | |
|
| 0.16 | 16.0 | 612 | 0.4104 | 0.875 | |
|
| 0.1096 | 16.9935 | 650 | 0.2920 | 0.9118 | |
|
| 0.1408 | 17.9869 | 688 | 0.2630 | 0.9044 | |
|
| 0.113 | 18.9804 | 726 | 0.3084 | 0.8824 | |
|
| 0.1272 | 20.0 | 765 | 0.2523 | 0.9412 | |
|
| 0.119 | 20.9935 | 803 | 0.4254 | 0.8824 | |
|
| 0.1068 | 21.9869 | 841 | 0.3519 | 0.8971 | |
|
| 0.0723 | 22.9804 | 879 | 0.3293 | 0.9191 | |
|
| 0.0769 | 24.0 | 918 | 0.2613 | 0.9265 | |
|
| 0.095 | 24.9935 | 956 | 0.2609 | 0.9412 | |
|
| 0.0863 | 25.9869 | 994 | 0.2650 | 0.9265 | |
|
| 0.0795 | 26.9804 | 1032 | 0.2978 | 0.9118 | |
|
| 0.0564 | 28.0 | 1071 | 0.2737 | 0.9191 | |
|
| 0.0562 | 28.9935 | 1109 | 0.2941 | 0.9191 | |
|
| 0.0751 | 29.8039 | 1140 | 0.3111 | 0.9191 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|