test_remove_2 / README.md
npvinHnivqn's picture
Update README file
f65efc3 verified
|
raw
history blame
2.41 kB
---
library_name: transformers
tags: []
---
## Original result
```
Not provided```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.012
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.006
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.006
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.037
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.064
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.072
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.074
```
## Config
- dataset: VinXray
- original model: hustvl/yolos-tiny
- lr: 0.0001
- dropout_rate: 0.1
- weight_decay: 0.0001
- max_epochs: 1
- train samples: 67234
## Logging
### Training process
```
{'validation_loss': tensor(8.3678, device='cuda:0'), 'validation_loss_ce': tensor(3.2526, device='cuda:0'), 'validation_loss_bbox': tensor(0.5756, device='cuda:0'), 'validation_loss_giou': tensor(1.1184, device='cuda:0'), 'validation_cardinality_error': tensor(99.5938, device='cuda:0')}
{'training_loss': tensor(1.3440, device='cuda:0'), 'train_loss_ce': tensor(0.2790, device='cuda:0'), 'train_loss_bbox': tensor(0.0702, device='cuda:0'), 'train_loss_giou': tensor(0.3571, device='cuda:0'), 'train_cardinality_error': tensor(0.6471, device='cuda:0'), 'validation_loss': tensor(1.6742, device='cuda:0'), 'validation_loss_ce': tensor(0.2339, device='cuda:0'), 'validation_loss_bbox': tensor(0.0976, device='cuda:0'), 'validation_loss_giou': tensor(0.4762, device='cuda:0'), 'validation_cardinality_error': tensor(0.5294, device='cuda:0')}
```
## Examples
{'size': tensor([560, 512]), 'image_id': tensor([1]), 'class_labels': tensor([], dtype=torch.int64), 'boxes': tensor([], size=(0, 4)), 'area': tensor([]), 'iscrowd': tensor([], dtype=torch.int64), 'orig_size': tensor([2580, 2332])}
![Example](./example.png)