phi-2-basic-maths / README.md
Menouar's picture
Adding Evaluation Results (#1)
51fddae verified
---
language:
- en
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- pytorch
datasets:
- gsm8k
base_model: microsoft/phi-2
pipeline_tag: text-generation
model-index:
- name: phi-2-basic-maths
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthfulqa
config: truthfulqa
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.4
name: mc2
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.7
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.4
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/phi-2-basic-maths
name: Open LLM Leaderboard
---
# phi-2-basic-maths
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an [GSM8K dataset](https://huggingface.co/datasets/gsm8k).
## Model Description
The objective of this model is to evaluate Phi-2's ability to provide correct solutions to reasoning problems after fine-tuning. This model was trained using techniques such as TRL, LoRA quantization, and Flash Attention.
To test it, you can use the following code:
```python
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, pipeline
# Specify the model ID
peft_model_id = "Menouar/phi-2-basic-maths"
# Load Model with PEFT adapter
model = AutoPeftModelForCausalLM.from_pretrained(
peft_model_id,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
```
## Training procedure
The complete training procedure can be found on my [Notebook](https://colab.research.google.com/drive/1mvfoEqc0mwuf8FqrABWt06qwAsU2QrvK).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 42
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 84
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 30
### Training results
The training results can be found on [Tensoboard](https://huggingface.co/Menouar/phi-2-basic-maths/tensorboard).
## Evaluation procedure
The complete Evaluation procedure can be found on my [Notebook](https://colab.research.google.com/drive/1xsdxOm-CgZmLAPFgp8iU9lLFEIIHGiUK).
Accuracy: 36.16%
Unclear answers: 7.81%
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Menouar__phi-2-basic-maths)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.60|
|AI2 Reasoning Challenge (25-Shot)|55.80|
|HellaSwag (10-Shot) |71.15|
|MMLU (5-Shot) |47.27|
|TruthfulQA (0-shot) |41.40|
|Winogrande (5-shot) |75.30|
|GSM8k (5-shot) |30.71|