Mollel's picture
Add new SentenceTransformer model.
9284eba verified
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
sentences:
- Panya anayekimbia juu ya gurudumu.
- Mtu anashindana katika mashindano ya mbio.
- Ndege anayeruka.
- source_sentence: Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia
mfuko wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
rangi nyingi.
sentences:
- Mwanamke mzee anakataa kupigwa picha.
- mtu akila na mvulana mdogo kwenye kijia cha jiji
- Msichana mchanga anakabili kamera.
- source_sentence: Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha
watoto wadogo wameketi ndani katika kivuli.
sentences:
- Mwanamke na watoto na kukaa chini.
- Mwanamke huyo anakimbia.
- Watu wanasafiri kwa baiskeli.
- source_sentence: Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi
ya kuogelea akiwa kwenye dimbwi.
sentences:
- Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye dimbwi.
- Someone is holding oranges and walking
- Mama na binti wakinunua viatu.
- source_sentence: Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa
kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi
nyuma.
sentences:
- tai huruka
- mwanamume na mwanamke wenye mikoba
- Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.6831671531193453
name: Pearson Cosine
- type: spearman_cosine
value: 0.677143022633225
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6891948944875336
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6892226446007472
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6916897298195501
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6916850273924392
name: Spearman Euclidean
- type: pearson_dot
value: 0.6418376172951465
name: Pearson Dot
- type: spearman_dot
value: 0.628581703082033
name: Spearman Dot
- type: pearson_max
value: 0.6916897298195501
name: Pearson Max
- type: spearman_max
value: 0.6916850273924392
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.6753009254241098
name: Pearson Cosine
- type: spearman_cosine
value: 0.6731049071307844
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6906782473185179
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6927883369656496
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6933649652149252
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.694111832507592
name: Spearman Euclidean
- type: pearson_dot
value: 0.600449101550258
name: Pearson Dot
- type: spearman_dot
value: 0.5857671058687308
name: Spearman Dot
- type: pearson_max
value: 0.6933649652149252
name: Pearson Max
- type: spearman_max
value: 0.694111832507592
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.6546200020168988
name: Pearson Cosine
- type: spearman_cosine
value: 0.6523958945855459
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6837289470688535
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6796775815725002
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6861328219241016
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6815842202083926
name: Spearman Euclidean
- type: pearson_dot
value: 0.5120576666695955
name: Pearson Dot
- type: spearman_dot
value: 0.49141347385563683
name: Spearman Dot
- type: pearson_max
value: 0.6861328219241016
name: Pearson Max
- type: spearman_max
value: 0.6815842202083926
name: Spearman Max
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- Mollel/swahili-n_li-triplet-swh-eng
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mollel/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka")
# Run inference
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6832 |
| **spearman_cosine** | **0.6771** |
| pearson_manhattan | 0.6892 |
| spearman_manhattan | 0.6892 |
| pearson_euclidean | 0.6917 |
| spearman_euclidean | 0.6917 |
| pearson_dot | 0.6418 |
| spearman_dot | 0.6286 |
| pearson_max | 0.6917 |
| spearman_max | 0.6917 |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6753 |
| **spearman_cosine** | **0.6731** |
| pearson_manhattan | 0.6907 |
| spearman_manhattan | 0.6928 |
| pearson_euclidean | 0.6934 |
| spearman_euclidean | 0.6941 |
| pearson_dot | 0.6004 |
| spearman_dot | 0.5858 |
| pearson_max | 0.6934 |
| spearman_max | 0.6941 |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6546 |
| **spearman_cosine** | **0.6524** |
| pearson_manhattan | 0.6837 |
| spearman_manhattan | 0.6797 |
| pearson_euclidean | 0.6861 |
| spearman_euclidean | 0.6816 |
| pearson_dot | 0.5121 |
| spearman_dot | 0.4914 |
| pearson_max | 0.6861 |
| spearman_max | 0.6816 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Mollel/swahili-n_li-triplet-swh-eng
* Dataset: Mollel/swahili-n_li-triplet-swh-eng
* Size: 1,115,700 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.18 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.53 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.8 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.</code> | <code>Mtu yuko nje, juu ya farasi.</code> | <code>Mtu yuko kwenye mkahawa, akiagiza omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### Mollel/swahili-n_li-triplet-swh-eng
* Dataset: Mollel/swahili-n_li-triplet-swh-eng
* Size: 13,168 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 26.43 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.37 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.7 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:-------------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.</code> | <code>Wanawake wawili wanashikilia vifurushi.</code> | <code>Wanaume hao wanapigana nje ya duka la vyakula vitamu.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine |
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:---------------------------:|
| 0.0115 | 100 | 9.6847 | - | - | - |
| 0.0229 | 200 | 8.5336 | - | - | - |
| 0.0344 | 300 | 7.768 | - | - | - |
| 0.0459 | 400 | 7.2049 | - | - | - |
| 0.0574 | 500 | 6.9425 | - | - | - |
| 0.0688 | 600 | 7.029 | - | - | - |
| 0.0803 | 700 | 6.259 | - | - | - |
| 0.0918 | 800 | 6.0939 | - | - | - |
| 0.1032 | 900 | 5.991 | - | - | - |
| 0.1147 | 1000 | 5.39 | - | - | - |
| 0.1262 | 1100 | 5.3214 | - | - | - |
| 0.1377 | 1200 | 5.1469 | - | - | - |
| 0.1491 | 1300 | 4.901 | - | - | - |
| 0.1606 | 1400 | 5.2725 | - | - | - |
| 0.1721 | 1500 | 5.077 | - | - | - |
| 0.1835 | 1600 | 4.8006 | - | - | - |
| 0.1950 | 1700 | 4.5318 | - | - | - |
| 0.2065 | 1800 | 4.48 | - | - | - |
| 0.2180 | 1900 | 4.5752 | - | - | - |
| 0.2294 | 2000 | 4.427 | - | - | - |
| 0.2409 | 2100 | 4.4021 | - | - | - |
| 0.2524 | 2200 | 4.5903 | - | - | - |
| 0.2639 | 2300 | 4.4561 | - | - | - |
| 0.2753 | 2400 | 4.372 | - | - | - |
| 0.2868 | 2500 | 4.2698 | - | - | - |
| 0.2983 | 2600 | 4.3954 | - | - | - |
| 0.3097 | 2700 | 4.2697 | - | - | - |
| 0.3212 | 2800 | 4.125 | - | - | - |
| 0.3327 | 2900 | 4.3611 | - | - | - |
| 0.3442 | 3000 | 4.2527 | - | - | - |
| 0.3556 | 3100 | 4.1892 | - | - | - |
| 0.3671 | 3200 | 4.0417 | - | - | - |
| 0.3786 | 3300 | 3.9434 | - | - | - |
| 0.3900 | 3400 | 3.9797 | - | - | - |
| 0.4015 | 3500 | 3.9611 | - | - | - |
| 0.4130 | 3600 | 4.04 | - | - | - |
| 0.4245 | 3700 | 3.965 | - | - | - |
| 0.4359 | 3800 | 3.778 | - | - | - |
| 0.4474 | 3900 | 4.0624 | - | - | - |
| 0.4589 | 4000 | 3.8972 | - | - | - |
| 0.4703 | 4100 | 3.7882 | - | - | - |
| 0.4818 | 4200 | 3.8048 | - | - | - |
| 0.4933 | 4300 | 3.9253 | - | - | - |
| 0.5048 | 4400 | 3.9832 | - | - | - |
| 0.5162 | 4500 | 3.6644 | - | - | - |
| 0.5277 | 4600 | 3.7353 | - | - | - |
| 0.5392 | 4700 | 3.7768 | - | - | - |
| 0.5506 | 4800 | 3.796 | - | - | - |
| 0.5621 | 4900 | 3.875 | - | - | - |
| 0.5736 | 5000 | 3.7856 | - | - | - |
| 0.5851 | 5100 | 3.8898 | - | - | - |
| 0.5965 | 5200 | 3.6327 | - | - | - |
| 0.6080 | 5300 | 3.7727 | - | - | - |
| 0.6195 | 5400 | 3.8582 | - | - | - |
| 0.6310 | 5500 | 3.729 | - | - | - |
| 0.6424 | 5600 | 3.7088 | - | - | - |
| 0.6539 | 5700 | 3.8414 | - | - | - |
| 0.6654 | 5800 | 3.7624 | - | - | - |
| 0.6768 | 5900 | 3.8816 | - | - | - |
| 0.6883 | 6000 | 3.7483 | - | - | - |
| 0.6998 | 6100 | 3.7759 | - | - | - |
| 0.7113 | 6200 | 3.6674 | - | - | - |
| 0.7227 | 6300 | 3.6441 | - | - | - |
| 0.7342 | 6400 | 3.7779 | - | - | - |
| 0.7457 | 6500 | 3.6691 | - | - | - |
| 0.7571 | 6600 | 3.7636 | - | - | - |
| 0.7686 | 6700 | 3.7424 | - | - | - |
| 0.7801 | 6800 | 3.4943 | - | - | - |
| 0.7916 | 6900 | 3.5399 | - | - | - |
| 0.8030 | 7000 | 3.3658 | - | - | - |
| 0.8145 | 7100 | 3.2856 | - | - | - |
| 0.8260 | 7200 | 3.3702 | - | - | - |
| 0.8374 | 7300 | 3.3121 | - | - | - |
| 0.8489 | 7400 | 3.2322 | - | - | - |
| 0.8604 | 7500 | 3.1577 | - | - | - |
| 0.8719 | 7600 | 3.1873 | - | - | - |
| 0.8833 | 7700 | 3.1492 | - | - | - |
| 0.8948 | 7800 | 3.2035 | - | - | - |
| 0.9063 | 7900 | 3.1607 | - | - | - |
| 0.9177 | 8000 | 3.1557 | - | - | - |
| 0.9292 | 8100 | 3.0915 | - | - | - |
| 0.9407 | 8200 | 3.1335 | - | - | - |
| 0.9522 | 8300 | 3.14 | - | - | - |
| 0.9636 | 8400 | 3.1422 | - | - | - |
| 0.9751 | 8500 | 3.1923 | - | - | - |
| 0.9866 | 8600 | 3.1085 | - | - | - |
| 0.9980 | 8700 | 3.089 | - | - | - |
| 1.0 | 8717 | - | 0.6731 | 0.6771 | 0.6524 |
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->